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Abstract

Underground mine schedules seek to determine start dates for activities
related to the extraction of ore, often with an objective of maximizing net
present value; constraints enforce geotechnical precedence between activities,
and restrict resource consumption on a per-time-period basis, e.g., development
footage and extracted tons. Strategic schedules address these start dates at a
coarse level, whereas tactical schedules must account for the day-to-day vari-
ability of underground mine operations, such as unanticipated equipment break-
downs and ground conditions, both of which might slow production. At the time
of this writing, the underground mine scheduling literature is dominated by a
deterministic treatment of the problem, usually modeled as a Resource Con-
strained Project Scheduling Problem (RCPSP), which precludes mine operators
from reacting to unforeseen circumstances. Therefore, we propose a stochastic
integer programming framework that: (i) characterizes uncertainty in duration
and economic value for each underground mining activity; (ii) formulates a new
stochastic variant of the RCPSP; (iii) suggests an optimization-based heuristic;
and, (iv) produces implementable, tactical schedules in a practical amount of
time and provides corresponding managerial insights.
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1. Introduction

Underground mining seeks to extract ore from deep underground through

constructed passageways, or tunnels. An underground mine design defines the

infrastructure necessary to efficiently gain access to this ore, and a produc-

tion schedule informs the timing of operational decisions, or the execution of

activities, given a design. These activities might consist of the extraction of

three-dimensional, notional blocks in an open pit mine, or the mining, and sub-

sequent backfilling, of a stope in an underground mine. Common objectives

include maximizing net present value or minimizing deviations from contracts.

Constraints: (i) enforce physical precedence between activities, e.g., develop-

ment in an area before extraction; and, (ii) restrict resource consumption on

a per-time-period basis, e.g., development footage and extracted tons. Brickey

[2015] presents a generalized underground mine scheduling model as a resource-

constrained project scheduling problem (Rcpsp) in which: (i) the duration of

each activity; (ii) lag, or required delay between activities; (iii) resources con-

sumed by each activity; and, (iv) economic value of completing each activity are

known. Scheduling synchronizes allocation of labor and mechanical resources

within the production process; in practice, schedules often fall short of provid-

ing an achievable plan because of uncertainty associated with the parameters;

rather, mine planners must make real-time adjustments as better estimates of

the data are realized. To mitigate the lack of clairvoyance using a more tailored

approach than the ad hoc addition of incorporating slack into the schedule, we

propose to include uncertainty for tactical decision making.

Production scheduling is used by mine management to make large financial

decisions (e.g., the size and quantity of equipment to purchase) and to meet

production goals (e.g., maximize net present value) [Dowd et al., 2016]. In this

paper, we develop policies associated with enterprises that are under the control

of a single planner. We take exogenous factors (such as the price of a commodity)

as given, thereby omitting market influences. However, this planner must still

contend with uncertainty inherent to the mining operation. Because the market
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fluctuates drastically day-to-day, corporate policy tends to take a longer-term

approach with respect to metal price. Therefore, the tactical uncertainty we

consider addresses the duration of activities that must be executed to extract

the mineral, and its grade. These act as proxies for the overall uncertainty in the

system, and serve to create stable production levels, which, in turn, generate

a stable revenue stream. We assume that all uncertainty associated with an

underground mining activity is only resolved completely when the activity is

completed. We propose using as a frame of reference a model whose solution

yields a typical industry-derived schedule based on mean-value point estimates.

The contributions of this paper are as follows: (i) a means to characterize

uncertainty in duration and ore grade through multiple scenarios; (ii) a new

stochastic programming formulation that takes into account uncertainty in du-

ration and economic value for each underground mining activity, maximizing

expected net present value by defining an interval in which activities start,

rather than a precise moment in time; (iii) a corresponding optimization-based

heuristic; and, (iv) managerial insights in contrast to those from a deterministic

schedule. The remainder of this paper is organized as follows: §2 provides a

literature review of deterministic and stochastic mine planning models, with an

emphasis on underground operations; §3 introduces the creation of scenarios and

a formulation of our integer program; §4 describes our solution techniques, in-

cluding an optimization-based heuristic and the implications of relaxing certain

constraints in our integer programming model; §5 presents results and corre-

sponding analysis, while §6 concludes.

2. Literature Review

Underground scheduling is more difficult than its open-pit counterpart

[O’Sullivan et al., 2015]. The following factors are common sources of com-

plexity: (i) the activity data, e.g., durations, are heterogeneous; (ii) practical

instances are particularly large, i.e., they contain many (discrete) variables and

constraints; and, (iii) there is an unstylized precedence structure and the graph
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corresponding to the precedence relationships between activities is dense. Trout

[1995] first discusses a mixed-integer program to schedule underground ore ex-

traction and backfilling activities. Carlyle and Eaves [2001] expand Trout’s

work by including development activities for a platinum and palladium mine

in Stillwater, Montana. Kuchta et al. [2004] and Newman and Kuchta [2007]

demonstrate a means to solve instances of a mixed-integer program that yields

lower deviations from contracts compared to manual practice at Kiruna Mine,

Sweden. Nehring et al. [2010] integrate operational and tactical underground

mining schedules into a single mathematical model through minimizing devia-

tion of targeted mill feed grade while maximizing net present value. O’Sullivan

and Newman [2014] develop optimization-based heuristics that produce sched-

ules for an underground lead and zinc mine in Ireland with a complex set of

precedence constraints. King et al. [2017] determines the boundary between

open pit and underground mining, presenting corresponding schedules for both

parts of the mine. Brickey et al. [2019] present five-year tactical schedules at

daily fidelity for Barrick’s Turquoise Ridge cut-and-fill mine. Some mine pro-

duction scheduling problems such as King et al. [2017] and Brickey et al. [2019]

can be cast in an Rcpsp-like framework. The main differences between this

framework in a mining context and in a more classical context are: (i) in mine

scheduling problems, the goal is to maximize the (expected) Net Present Value

(NPV) of the mine while in the classical Rcpsp, the typical objective is to min-

imize the makespan of the project; and (ii), in mining problems, each activity

is optionally executed, while in the classical Rcpsp, all activities must be exe-

cuted. Research such as O’Sullivan and Newman [2014], King et al. [2017], and

Brickey et al. [2019] incorporate greater operational details than earlier work,

which, in turn, produces more adoptable schedules. However, none of these

references incorporates uncertainty into their scheduling paradigm, and all are

therefore more suited to longer term, strategic mining.

In reality, there is uncertainty associated with most inputs, e.g., production

rates, costs, and profits, of the mine planning process; point estimates do not

necessarily generate feasible tactical schedules. The mining industry addresses
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uncertainty explicitly, but not necessarily through optimization-based methods.

Sari [2009] utilizes stochastic modeling to evaluate the potential for accidents

and, correspondingly, worker-days lost, in a Turkish coal mine. The author

combines statistical modeling and Monte Carlo simulations. In another safety-

related application, Karacan and Luxbacher [2010] model the performance of

gob gas ventholes, which are used to remove methane in previously mined areas

of longwall coal mines; as in Sari [2009], their techniques include multi-parameter

regression models and Monte Carlo simulations to determine the variability in

venthole performance. Researchers have begun to incorporate uncertainty in

their models to produce more realistic mine plans. Rojas et al. [2007] formu-

late an optimal control policy for the extraction of ore in an open pit mine,

and demonstrate their methodology on a small example. Lamghari and Dimi-

trakopoulos [2012] develop heuristic search techniques to solve an open pit mine

production scheduling problem cast as a stochastic integer program that ac-

counts for uncertainty in metal content. Another common practice in strategic

decisions extends deterministic analysis by quantifying the effects of uncertainty

at multiple, fixed levels of market conditions [Rossi, 2014]. Reus et al. [2019]

consider uncertainty related to production incidents such as strikes and accidents

that may slow production and/or decrease expected profits. Their stochastic

program represents a strategic mine-planning model which they decompose to

enable the inclusion of a very large number of scenarios over a 15-year planning

horizon. Caldentey et al. [2019] apply real options to address price uncertainty

for making capacity expansion decisions in a long-term copper mining project.

While these works consider uncertainty at an aggregate planning level, other

researchers focus on uncertainty at the block level in the production planning

process. For instance, Alonso-Ayuso et al. [2014] provide an example of the inclu-

sion of uncertainty in underground mining with respect to copper price in a block

caving (underground) mine scheduling problem; their stochastic program consid-

ers many scenarios, and is then transformed into a deterministic equivalent. By

testing value-at-risk and conditional-value-at-risk strategies, they conclude that

a very modest reduction in expected profit with respect to the risk-neutral model
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can offer significantly better risk control, measured as the probability of having

negative profit, and the expected losses given that losses will occur. Carpentier

et al. [2016] seek a robust cut-off grade for a cluster of underground nickel mines

that use the same labor and material resources; their two-stage stochastic pro-

gram includes decisions related to mine opening and closure, and incorporates

precedence and elastic constraints on mining operations (e.g., development and

extraction); the objective maximizes net present value and minimizes deviation

from target production levels. Dirkx and Dimitrakopoulos [2018] also account

for uncertainty in grade and drawdown rate in determining feasibility of meeting

long-term production targets for a potential mineral deposit using block cave

mining. The authors use stochastic mixed-integer programming to maximize

the net present value and minimize production target deviation with respect

to mining capacity, continuous extraction, production grade, inter-drawpoint

precedence, and milling operations. Del Castillo and Dimitrakopoulos [2019]

optimize production planning in the face of price and geologic uncertainty for

an open-pit mining complex. Their model considers long-term design and fleet

sizing, as well as shorter term tactical decisions. They apply their multi-stage

model to a copper mine, and contrast their results with those from a two-stage

model.

In a related vein, the literature of the Rcpsp under uncertainty focuses on ac-

tivity durations while neglecting that in profits and costs. Most of this literature

assumes that the uncertain duration of the activities are random variables with a

known (joint) probability distribution, with corresponding modeling frameworks

broadly classified as proactive and reactive [Herroelen and Leus, 2004, 2005; De-

meulemeester and Herroelen, 2011; Ortiz-Pimiento and Diaz-Serna, 2018]. In

proactive scheduling, the focus is on computing an initial baseline schedule that

is protected as much as possible against future uncertainty. On the other hand,

the goal of reactive scheduling is to amend a given baseline schedule or to create

a schedule in real time, as uncertainty is revealed and activities and resources

become available. Corresponding solution techniques are tested on instances

having very few activities (i.e., fewer than 120). Moreover, almost no solution
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method integrates the proactive and reactive approaches. The only exception

to the latter restriction is Davari and Demeulemeester [2019], but with the lim-

itation that the problem is modeled as a Markov Decision Process over a very

restricted set of possible reactive policies.

Our approach consists of an integrated proactive-reactive approach for mine

scheduling under stochastic activity duration and ore grade uncertainty. It gen-

erates an initial baseline schedule that seeks to maximize the expected NPV of

the mine, and initially assigns to each activity a fixed time interval in which such

an activity must start to be executed for all possible realizations (i.e., scenar-

ios) of stochastic duration and ore grade. The only constraint imposed on the

reactive policy is that each activity must start within its corresponding baseline

time interval. Therefore, our approach is integrated since the (proactive) base-

line schedule and the reactive policy are both jointly determined. To the best

of our knowledge, our work is the first in the literature to propose the concept

of baseline schedule with associated time intervals, which lends a different inter-

pretation to the resulting schedule; specifically, having a time interval for each

activity provides the practitioner with a global view of the project’s execution

times.

The optimization model that must be solved to obtain a baseline schedule

and its associated reactive policy corresponds to a multi-stage stochastic inte-

ger programming (MSIP) problem; decision-dependent uncertainty is revealed

as decisions are made. Adding constraints linking randomness and decisions

complicates the problem to such an extent that its solution must usually be

derived using heuristics [Jonsbråten et al., 1998]. The challenge is to maintain

non-anticipativity; that is, decisions for scenarios that are indistinguishable up

to some time period t must be the same for all time periods up to t. Build-

ing on ideas from Goel and Grossmann [2004], we propose a novel multi-stage

stochastic integer program for our mine scheduling problem that can handle

non-anticipativity constraints in the context of decision-dependent uncertainty.

Two-stage stochastic integer programming problems, which are a simpler

subclass of MSIP problems, are challenging to solve due to the absence of convex-
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ity and to the presence of discontinuities in the expected cost function [Ahmed,

2010]. Several corresponding algorithms have been proposed, usually leverag-

ing problem structure, e.g., simple recourse [Haneveld et al., 1995], continuous

second-stage variables [Liu et al., 2009], and binary variables [Ntaimo, 2010].

We refer the reader to several excellent surveys [Haneveld and van der Vlerk,

1999; Schultz et al., 1996; Carøe and Schultz, 1999; Küçükyavuz and Sen, 2017].

Given the complexity of our MSIP problem and the large size of mine

scheduling problem instances, we do not attempt to solve the monolith directly.

Rather, we propose a three-step optimization-based heuristic that proceeds as

follows. First, we relax the non-anticipativity and integrality constraints, and

then we solve the resulting two-stage stochastic linear programming problem.

Second, based on the optimal solution of the problem solved in the first step,

we create a priority list of activities. Finally, using the priority list, we build

the baseline schedule and create the corresponding reactive policy. Two-stage

stochastic linear programming problems have been traditionally solved by the

L-shaped method [Van Slyke and Wets, 1969] and variations. We propose an

alternative approach that takes advantage of the Rcpsp structure of our prob-

lem. Specifically, we use a decomposition approach [Muñoz et al., 2018] based

on Bienstock and Zuckerberg [2010].

3. Modeling

We begin by conceptualizing our MSIP problem. Then, we model uncer-

tain problem parameters as random variables; the probability distributions of

these random parameters are estimated from geological and geotechnical data.

Finally, we formally state the problem, i.e., we define the instance, decision

variables, objective function, and constraints that form our stochastic mine

scheduling problem.

We develop an integer-programming model that seeks to determine when,

if ever, various activities in an underground mine start so as to maximize net

present value subject to precedence constraints between the activities, and re-
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source constraints associated with the execution of any given set of activities in a

particular time period. However, rather than solving the deterministic formula-

tion, as given, e.g., in Brickey [2015] or Brickey et al. [2019], we add uncertainty

in the forms of: (i) the amount that the execution of an activity contributes

to the net present value, and (ii) the duration required to execute any given

activity. The solution to this new stochastic programming model defines an

interval in which activities start, rather than a precise moment in time, and

constitutes an integrated proactive-reactive approach by generating an initial

baseline schedule with the reactive policy that each activity must start within

its corresponding baseline time interval. Such solutions have an advantage over

those generated by alternative approaches in the literature: time-interval width,

δ, provides the decision maker a control on the variability of the starting times

of the activities. We define the following notation:

Sets
symbol definition

A all activities
Ω sample space, ordered by scenario: 1, 2, ..., |Ω|

Parameters
symbol definition [units]

δ ∈ N0 time-interval width [time periods]

The following example illustrates. Let us consider the scheduling of seven

activities, i.e., |A| = 7, over a sample space consisting of four scenarios, i.e.,

Ω = {1, 2, 3, 4}. Furthermore, we alternatively examine the cases of δ = 0 and

δ = 2. The remaining components of the instances (which we define when

presenting our complete mathematical formulation) are identical in both cases

and are irrelevant for the purpose of this example.

Figure 1 contains a graphical representation of optimal solutions for the cases

δ = 0 and δ = 2, where the shades demonstrate that the execution times of each

activity (i.e., the time periods at which the activity is under execution) present
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less variability in case δ = 0 than in case δ = 2. For δ = 0, the variability

of the execution times is explained only by the variability of the parameters

(duration) because each activity starts at the same time period (represented by

the black diamond in the Figure 1a) in all scenarios. Alternatively, for the case

in which δ = 2, activities do not necessarily begin at the baseline start time; the

higher variability in the execution times is explained both by the variability in

the parameters and by the variability in the starting times.
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Figure 1: The square brackets correspond to the time intervals associated with the
baseline schedules; a colored square represents the corresponding activity being under
execution at a given time period, and darker squares indicate that more scenarios cast
an activity as in progress at that time. The optimal baseline schedule is represented
by black diamonds.

A solution that provides less variability in the starting times, and therefore

less variability in the execution times, is attractive to the decision maker: it

allows for anticipation regarding the time at which activities will be carried

out. Nevertheless, less variability in the starting times requires smaller values

of δ, which implies a lower expected net present value of the schedule. Conse-

quently, there is a trade-off between starting-time variability (controlled by δ)

and expected net present value of the schedule.

3.1. Representation of Uncertainty in Activity Value and Duration

Geological uncertainty is inevitable with widely spaced drill holes [Kousha-

vand et al., 2014] from which geological information is gained to construct a

block model, and represents the inability to accurately represent the grade, geo-

logic boundaries, or other conditions of a rock mass [Bruno, 2019, Chapter 12].
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This uncertain information is used to define activities and their associated char-

acteristics such as ore content and resource requirements for their execution,

and gives rise to two uncertain parameters of interest in our application: eco-

nomic and geotechnic. The economic value of completing an activity depends

on the mineralogical properties of the rock (such as grade concentration, rock

hardness, grain size, and oxidation intensity), the capability of the mining oper-

ation (such as equipment capacity and market demand), and the metallurgical

efficiency of the milling process, inter alia. Matheron [1962] provides founda-

tions for applying statistical techniques to mineral resource reserve estimation

and grade control. The related procedure using stochastic or geostatistical sim-

ulation is mature and well established [Goovaerts, 1997]. Block models record

estimated grade for each unit of a spatially discretized orebody, and are often a

product of a simulation. While the procedure is valid, we seek an improvement

by exploiting all available information.

Geotechnic uncertainty, which arises from the inability to accurately esti-

mate the quality of the rock, i.e., strength, composition, and structure, has a

direct effect on an activity’s duration. Specifically, because rock masses can

be unbroken (at one extreme) or highly fractured (at the other), impacting

their strength, the amount and type of resources to develop the necessary un-

derground infrastructure can vary considerably, and sometimes unpredictably.

Ground control mitigates poor rock quality through engineering protocols such

as roof bolts, shockcrete, and other supports, and the extent to which this con-

trol must be implemented affects the time required to complete various activities

[Darling, 2011, Chapter 8].

We describe the nature of both economic and geotechnical uncertainty, defin-

ing notation using the conventions that lower case letters are parameters and

indices; upper case letters in calligraphic font are sets, and upper case letters in

roman font are variables (see Teter et al. [2016] for guidelines). Hats and over-

bars differentiate sets that represent similar entities. Without loss of generality

with respect to our optimization framework, we treat random parameters vωa
and dωa as independent of each other.
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Parameters
symbol definition [units]

vωa ∈ R value of completing activity a ∈ A in scenario ω ∈ Ω [dollars]
dωa ∈ N duration of activity a ∈ A in scenario ω ∈ Ω [time periods]

To estimate value parameters, vωa , we use a standard geostatistical approach.

We consider a continuously varying quantity over a spatial domain D ⊂ R3, and

model the estimates as a Gaussian Process, defined by the property that any

finite combination of observations fromD follows a multivariate normal distribu-

tion. Within this framework, we use a procedure based on the Cholesky decom-

position of the data variance-covariance matrix Σ to simulate values [Cressie,

1991]. Modeling the random duration parameters dωa requires an ad-hoc ap-

proach given that the available data in typical mines consists of estimates with

only one value for each activity.

3.2. Problem Statement

An instance of our problem requires the following additional inputs:

Sets
symbol definition

Pa ⊆ A activities that must be completed before activity a ∈ A can start
R resource types required to execute activities
T time periods

Parameters
symbol definition [units]

γ ∈ R+ value discount factor per time period [–]
q̄r ∈ R+ quota of resource r ∈ R available (renewable) [units/time period]
qar ∈ R+ amount of resource r ∈ R consumed by activity a ∈ A [units/time period]

Regarding random value and random duration of each activity, we note that,

aside from very special cases, MSIP problems cannot be solved explicitly for

arbitrary probability distributions due to the presence of the expected multi-

stage cost. A common approach is to replace the expected value by an average

12



over a finite set of scenarios using the Sample Average Approximation [Kleywegt

et al., 2002; Linderoth et al., 2006] by generating samples from the distribution

of the random elements. Consequently, we assume that the sample set Ω is

finite and that the probability of occurrence of each scenario is equal to 1/|Ω|.

We also assume that the number of time periods in T corresponds to the set

of consecutive natural numbers between 1 and T , where T is a given natural

number. The decision variables of the problem are the following:

Variables
symbol definition

Xω
at 1 if activity a starts at time period t in scenario ω, 0 otherwise

Yat 1 if the baseline start time of activity a is equal to time period t, 0 otherwise
Zωω

′

t 0 if Xω
at = Xω′

at for activity a, time period t, and scenario pair {ω, ω′}

Finally, our MSIP problem can be stated as follows.
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(S) max
Xω

at, Yat, Zωω′
t

1

|Ω|
∑
ω∈Ω

∑
t∈T

∑
a∈A

γt+d
ω
a−1vωaX

ω
at (1)

s.t.
∑
t∈T

Xω
at ≤ 1 a ∈ A;ω ∈ Ω (2)

t∑
t′=1

Xω
at′ ≤

t−dω
a′∑

t′=1

Xω
a′t′ a ∈ A; a′ ∈ Pa; t ∈ T ; ω ∈ Ω (3)

∑
a∈A

t∑
t′=max{1,t−dωa +1}

qar X
ω
at′ ≤ q̄r r ∈ R; t ∈ T ;ω ∈ Ω (4)

t∑
t′=1

Yat′ ≤
min{T,t+δ}∑
t′=1

Xω
at′ a ∈ A; t ∈ T ; ω ∈ Ω (5)

t∑
t′=1

Xω
at′ ≤

min{T,t+δ}∑
t′=1

Yat′ a ∈ A; t ∈ T ; ω ∈ Ω (6)

Zωω
′

t ≤
∑

a∈Dωω′

 t−dωa∑
t′=1

Xω
at′ +

t−dω
′

a∑
t′=1

Xω′

at′

 t ∈ T ;ω, ω′ < ω ∈ Ω (7)

Xω′

at − Zωω
′

t ≤ Xω
at ≤ Xω′

at + Zωω
′

t a ∈ A; t ∈ T ;ω, ω′ < ω ∈ Ω (8)

Xω
at, Yat, Z

ωω′

t binary a ∈ A; t ∈ T ; ω, ω′ < ω ∈ Ω (9)

The objective, represented by (1), is to maximize the expected net present

value of the reactive policy; constraints (2) allow activities to start within the

time horizon, and only once, if at all. Constraints (3) impose the precedence

constraints: activities can start only after their predecessors have been com-

pleted. Constraints (4) enforce resource constraints: the resources consumed in

each time period cannot exceed the amount of available resource. Constraints

(5) and (6) impose the time-interval condition: activities must start within δ

time periods of the baseline for all scenarios. Finally, constraints (7) and (8)

enforce the non-anticipativity constraints: if a pair of scenarios are indistin-

guishable up to a given time period, then the schedule for those scenarios must

coincide up to that time period. In particular, given a pair of scenarios ω and

ω′, the set of differentiating activities, Dωω′ ⊆ A, contains the activities that
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allow us to differentiate both scenarios, i.e., those activities that have different

duration and/or value for scenarios ω and ω′. Formally, this set (see Goel and

Grossmann [2004]) is defined as follows:

Dωω
′

= {a ∈ A : dωa 6= dω
′

a ∨ vωa 6= vω
′

a }.

.

Note that constraints (7) and (8) depend on the information gained through

completing activities. Specifically, when Zωω
′

t = 0, then constraint (8) forces

Xω
at = Xω′

at ; and, when Zωω
′

t = 1, constraint (8) is void. For the sake of simplic-

ity, we refer to these constraints as non-anticipativity constraints, despite the

fact that they are conditional non-anticipativity constraints, and should not be

confused with the traditional non-anticipativity constraints found in standard

stochastic programming textbooks [Birge and Louveaux, 2011]. The following

example shows how non-anticipativity constraints (7) and (8) distinguish sce-

narios.

Example: We assume that there are two activities (a1 and a2) and two

scenarios (ω1 and ω2). The time limit of the project, T , is equal to 6. More-

over, there is only one unit of resource available per time period, and activities

consume one unit of resource per time period of execution. For simplicity, we

assume that: (i) we need not create a baseline schedule; and, (ii) there are

no precedence constraints. Table 1 provides the value and duration for each

activity in each scenario.

vωa dωa

ω1 ω2 ω1 ω2

a1 1 1 2 1
a2 1 1 4 4

Table 1: We provide the value, vωa , and duration, dωa , for each activity and scenario
in the example.

Let us consider two execution policies: in the first, activity a1 is executed

first, followed by activity a2; in the second, the reverse. Figure 2 represents
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both execution policies.

t 1 2 3 4 5 6

ω1 a1 1 0 0 0 0 0
a2 0 0 1 0 0 0

ω2 a1 1 0 0 0 0 0
a2 0 1 0 0 0 0

1 2 3 4 5 6

ω1 a1

a2

ω2 a1

a2

(a) Policy 1: Xω
at values and corresponding Gantt chart

t 1 2 3 4 5 6

ω1 a1 0 0 0 0 1 0
a2 1 0 0 0 0 0

ω2 a1 0 0 0 0 1 0
a2 1 0 0 0 0 0

1 2 3 4 5 6

ω1 a1

a2

ω2 a1

a2

(b) Policy 2: Xω
at values and corresponding Gantt chart

Figure 2: Here, we provide the Gantt charts and tables showing time along the x-
axis. Activity a1 and a2 share resource r1, resulting in two possible policies. In a
policy, each scenario has its own schedule, and schedules within a policy are identical
to the left of the dotted line.

We note that the set of differentiating activities is composed only by ac-

tivity a1, i.e., Dω1ω2 = {a1}. Let us first analyze Policy 1. Looking at its

corresponding Gantt chart, we see that, from the beginning of time period 2

on, both scenarios are differentiated since activity a1 is completed at the end

of time period 1 in scenario ω2. Thus, constraints (7) impose Zω1ω2
1 = 0. This

fact, together with constraints (8), implies that Xω1
a11 = Xω2

a11 and Xω1
a21 = Xω2

a21.

On the other hand, constraints (7) imply that Zω1ω2

t′ is equal to 0 or 1 for the

remaining time periods t′ = 2, . . . , 6. Therefore, constraints (8) are inactive,

which implies that Xω1

a1t′
is not necessarily equal to Xω2

a1t′
for each time period

t′ = 2, . . . , 6. Analogously, Xω1

a2t′
is not necessarily equal to Xω2

a2t′
for each time

period t′ = 2, . . . , 6.

Now, let us analyze Policy 2. In its Gantt chart, we see that differentiating

activity a1 is completed only at the end of time period 5 in scenario ω2. There-

fore, constraints (7) imply that Zω1ω2

t′ = 0, and, by constraints (8), Xω1

a1t′
= Xω2

a1t′
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and Xω1

a2t′
= Xω2

a2t′
for each time period t′ = 1, . . . , 5. At time period 6, Zω1ω2

6 is

equal to 0 or 1, then constraints (8) are inactive. Thus, Xω1
a16 is not necessarily

equal to Xω2
a16, and X

ω1
a26 is not necessarily equal to Xω2

a26.

4. Solution Methodology

Instances of problem (S) cannot be solved in polynomial time (under the

assumption that p 6= np). The Rcpsp is known to be np-hard [Blazewicz et al.,

1983], and reduces to (S) with |Ω|=1 (and, therefore, without constraints (5),

(6), (7) and (8)). Realistic instances of tactical underground mining problems

are large, often including thousands of activities, hundreds of time periods, and

multiple scenarios, making it impossible to solve (S) in an operationally feasi-

ble amount of time (e.g., hours) by directly applying a standard mixed-integer

programming solver to the monolith. Furthermore, ad hoc algorithms designed

for scheduling problems with deterministic parameters exploit structure that is

absent in our multiple-scenario case.

It is possible to strengthen (S) by reformulating constraint (7); for example,

the number of terms on its right-hand side could be reduced by including only

the more limiting of the two summations based on activity duration. Another

potential formulation enhancement sums constraint (7) over a and its union

of predecessors. While valid and potentially useful, numerical results indicate

that the linear relaxation of our proposed formulation is tight; at any rate,

the first suggestion increases the density of the constraint set. On the other

hand, preliminary numerical testing indicates that the RAM storage require-

ments (which grow with the density of the constraint matrix) are more limiting

than the quality of the linear programming relaxation. Modeling conditional

non-anticipativity requires constraints which are theoretically necessary to craft

solutions given our multi-scenario setting. However, the number and density of

these constraints, specifically, constraints (7) and (8), contribute significantly to

the difficulty of solving (S). We therefore initially relax these constraints, call-

ing the resulting problem (S−). Not only does this relaxation remove “difficult”
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constraints, it reduces the model to one with an Rcpsp-like structure, amenable

to solution via an academic research solver. Specifically, Omp Solver [Rivera

et al., 2015] is capable of quickly finding the optimal solution to the linear relax-

ation of problem (S−) for realistically sized instances by using a tailored linear

programming algorithm [Muñoz et al., 2018] which decomposes the problem [Bi-

enstock and Zuckerberg, 2010]. We refer to the linear programming relaxation

of problem (S−) as (LS−).

Table 2 describes the linear programming-based heuristic H in three steps.

First, H1 solves the linear program, (LS−). Let (X ′, Y ′) be the corresponding

optimal solution. Second, H2 conducts a Simple Sort as follows: (i) determine

a mean baseline start time, MSa =
∑
t∈T tY

′
at, for each activity a ∈ A; (ii)

discard all activities a ∈ A with MSa < 0.5; and, (iii) sort, non-decreasing

by mean start time, to produce a Priority List (Appendix A, Algorithm 1).

Third and finally, H3, given the priority list, applies a list-scheduling heuristic

(Appendix A, Algorithm 2) in order to obtain a feasible solution, (X,Y ), for

problem (S). A proof of correctness of Algorithm 2 is found in Appendix B.

Phase Input → Algorithm → Output

H1 Instance of (S) Bienstock-Zuckerberg (X′, Y ′)
H2 (X′, Y ′) Simple Sort (See Algorithm 1, Appendix A) Priority List
H3 Priority List List Scheduling (See Algorithm 2, Appendix A) (X,Y )

Table 2: We give a description of the heuristic by phases, which includes inputs,
algorithms, and outputs. Phase H3 produces a feasible solution, (X,Y ).

5. Case Study

The case study for this investigation is a United States-based, large-scale

underground mine at which annual production is approximately 1.8 million tons

of material (ore and waste) and 370,000 troy ounces of gold [Brickey, 2015]. The

mine uses an underground stoping method that consumes five resources (see

Table 3) associated with development, extraction, backfill, and other ancillaries.

We use a value of 1 time period for δ and a daily, i.e., per time period, discount

rate of 0.02%. Each of the 15,773 activities has (i) a type, (ii) precedence
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and resource requirements, (iii) a value (which can be negative) and (iv) a

duration. We describe first how we generate scenarios based on attributes (iii)

and (iv) to populate instances of our MSIP problem, (S), and then how we solve

it via the method outlined in Table 2.

Constraint Constrained Activity Types Upper Bound Units

Total tonnage Development, mining and all backfill 11,000 [tons/day]
Total tonnage Cement and paste backfill 5,000 [tons/day]
Total tonnage Unconsolidated rock backfill 2,500 [tons/day]
Ore tonnage Development and mining 6,000 [tons/day]

Footage Development 155 [feet/day]
Concurrent activities Vertical development 1 [activity/day]

Table 3: Five resources adapted from our case study constrain activity completion.

5.1. Scenario Development

Activity grade is derived from simulations of the gold concentration in the

orebody given borehole sample data; the feature grade represents the concen-

tration of gold estimated in troy ounces per ton, and yields a way to compare

concentrations of gold over space because, for each activity, the feature accounts

for the mass of rock to be mined. We restrict for which activities to model un-

certain grade and for which to hold their values constant. Grade values used

to calculate the revenue component of value (from the sale of gold extracted)

are adjusted from the block model values, which are based on the physical es-

timated value of gold in the orebody, and incorporate recovery rates associated

with mining and processing.

To model value, we only consider activities associated with mining-specific

types, i.e., we do not consider development or ancillary activities. These are

Stope-Mining, Up-Hole, Cut-Fill, and Floor-Pull. Of the original 15,773

activities, this leaves 1,509. We further limit this number to high-grade activi-

ties based on the assumption that the majority of the grade uncertainty lies in

this set. This further reduces the set to 159 activities. Let {s1, ..., s159} ∈ R3 be

the locations of the data and {v̂(s1), ..., v̂(s159)} be the values of grade observed

at those locations.

Figure 3 shows that {v̂(s1), ..., v̂(s159)} appears within a tolerance of nor-
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mality to accept the Gaussian Process assumption as a model for these data.

We conduct a formal test for spatial dependence with Moran’s I-score [Moran,

1950], a type of correlation coefficient which measures spatial dispersion or cor-

relation present in a data set based on observation proximity. We can formally

check for spatial dependence by testing a null hypothesis of purely random spa-

tial observations. Figure 4a shows Moran’s I-score as a function of the number

of neighbors, which we determine to be 0.50 with k = 3 neighbors, suggesting

moderate spatial autocorrelation. For each number of neighbors k, the Moran’s

I-score tests as significant. We then center the data to form a mean-zero Gaus-

sian Process.

(a) Histogram of grade (b) Normal Q-Q Plot

Figure 3: We show the normality of grade, and provide a histogram of 159 grade
observations used for simulations, displayed in fifteen bins. We also depict the Normal
Quantile-Quantile (Q-Q) Plot of grade with the theoretical reference line superim-
posed in blue.

We determine whether the resulting mean-zero Gaussian Process forms a

second-order stationary random field. The stationarity assumption must be

checked to validate subsequent analysis and to produce accurate simulations

although, in practice, it is almost always an approximation. Bandyopadhyay

and Rao [2017] provide a method for evaluating the presence of non-stationarity

with irregularly spaced spatial data, which uses a Discrete Fourier Transform of

the observations. If the resulting Fourier coefficients are “nearly uncorrelated,”

then the underlying spatial process is second-order stationary; otherwise, this
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property does not hold. We pose a null hypothesis that v(·) is a second-order

stationary random field; tests yield a statistic of 6.60 with a corresponding p-

value of 0.22. We therefore fail to reject the null hypothesis, and maintain the

stationarity assumption.

We investigate appropriate covariance functions to model the centered data.

A classic family consists of the Matérn covariance functions. While flexible, they

depend upon a collection of estimated parameters: The smoothness parameter,

ν, is particularly difficult to estimate directly from the data, so instead we

evaluate the performance of a set of Matérn covariance functions for a range

of chosen values for ν: 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50. Figure

4b shows the log-likelihood of a Matérn covariance function for these values.

The maximum log-likelihood occurs where ν = 1.25; however, a close second

maximum occurs where ν = 1. In fact, the log-likelihood values for each of

these choices of ν agree up to two decimal places, and so, in practice, would

perform quite similarly. Given these two options, we select ν = 1 because: (i)

a Matérn covariance function with smoothness ν assumes that the underlying

spatial field is dν − 1e times differentiable (implying that with ν = 1, there is no

differentiability assumption); and, (ii) taking ν = 1 with a Matérn covariance

function is a special case known as a Whittle covariance function [Guttorp and

Gneiting, 2006]. Because we are reverse-engineering the simulation process that

gave rise to the values of grade present in our data, it seems more likely that

the simulators would choose a Whittle covariance function over setting ν ≈ 1.25

given its popularity in geostatistical applications. A Whittle covariance function

is also dependent upon a range parameter; checking a fine grid yields θ = 54 ft

to maximize the likelihood.

With our chosen covariance function, we construct the variance-covariance

matrix Σ. We then use the Cholesky decomposition method to simulate grade

across the spatial field [Cressie, 1991]. This method is valid for general multi-

variate Gaussian random variables and does not require a stationary or isotropic

covariance function.

We now turn our attention to the second source of uncertainty, that asso-
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(a) Moran’s I-score as a function
of the number of neighbors.

(b) Log-likelihood as a function of
smoothness.

Figure 4: We show Moran’s I-score as a function of the number of neighbors, and
the log-likelihood as a function of smoothness assuming a Matérn covariance function
over the centered grade data.

ciated with an activity’s duration. Related to this, we note that there are six

rock densities reflecting the different rock types present in the mine, which is

partitioned into seven regions such that each region is labeled a ground risk area

(see Figure 5). Incorporating information regarding these qualitatively differ-

ent areas of the mine into our duration simulations enables us to account for

geotechnical uncertainty. There is a unique observation for each activity in each

geological risk area in our data set.

For a scenario ω ∈ Ω and activity a ∈ A, we model duration as dωa =

bd̂a + βωa e, where d̂a is the duration of activity a in the data set used in a

deterministic model derived from industry standards and βωa accounts for vari-

ability associated with geotechnical uncertainty. (Note that the rounding func-

tion, which we denote b·e, should equal at least 1, because we assume that the

duration is a positive integer – for compatibility with the way in which our

integer program handles time fidelity.) Let fg be a scaling factor represent-

ing the “worst-case” duration increase resulting from an activity occurring in a

ground risk area g. For each scenario ω ∈ Ω and ground risk area g, we gener-

ate Uωg ∼ U [−1, 1] and define βωa = fgd̂aU
ω
g . We make this modeling decision

because, within a window for a given activity duration, we assume all other
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(a) Design top view (b) Design side view

Figure 5: Given a design, the location of activities can be mapped to ground risk
areas g through expert analysis of borehole data.

durations are equiprobable. An additional benefit is that the expected value of

βωa is zero, in which case we recover in expectation the initial duration estimate

d̂a.

We incorporate only a modest number of scenarios (five), commensurate with

the intuition of mine operators and on par with the resulting size of instances

in the literature (based also on the number of activities and length of time hori-

zon) [Leite and Dimitrakopoulos, 2007; Consuegra and Dimitrakopoulos, 2010].

Using these scenarios, we demonstrate how our procedure yields solutions in an

operationally feasible amount of time, whereas a straightforward application of

a state-of-the-art solver to the monolith solves only the smallest instance. Then,

we compare solution quality of the stochastic programming model to that of a

deterministic problem, (D); the latter assumes a single scenario with means for

value and duration of each activity a ∈ A over all scenarios, given as v̄a and d̄a,

respectively.

5.2. Results

All experiments were run using the following hardware: a Sun Fire X2270

M2 with two Intel Xeon X5675 processors at 3.07 GHz, 48 GB RAM and under
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the Ubuntu 18.04 operating system. All algorithms were implemented in Julia

1.0.5 and run in serial mode, i.e., on a single thread, to avoid memory overflows.

The exact solution of all linear and integer programming problems were obtained

with CPLEX 12.10.0.0 through its Julia interface, JuMP.

In order to test the efficacy of our heuristic and the quality of the solutions

it provides relative to (i) solving the deterministic equivalent and (ii) solving

the stochastic program in its monolith form, we present a variety of numerical

experiments (Table 4).

Problem Solution Method Treatment of Non- |Ω| Value Duration
technique uncertainty anticipativity

(S) exact CPLEX stochastic yes 5 vωa dωa
(S−) exact CPLEX stochastic no 5 vωa dωa
(D) heuristic H1 + H2 + H3 deterministic NA 1 v̄a d̄a
(S) heuristic H1 + H2 + H3 stochastic yes 5 vωa dωa

Table 4: We conduct numerical experiments on these four problem variants using the
methods outlined in the third column and with the problem characteristics given in
the remaining columns.

Table 5 reports solution times. Solving the monolith directly for (S), and

even for (S−), i.e., without the non-anticipativity constraints, is only possible for

the smallest instance, i.e., that containing 56 activities, and requires an order

of magnitude more time than our proposed heuristic (§4). For the smallest

three instances, solutions from the stochastic program require more time to

obtain than those from the deterministic equivalent; however, as problem size

increases, solving the linear-programming relaxation can be as difficult for the

deterministic as the stochastic case. In the largest instances, both cases reach

a time limit. In all instances, solution times are dominated by the execution

of the Bienstock-Zuckerberg algorithm, and fall within ten hours (even if an

eight-hour time limit for the execution of the Bienstock-Zuckerberg algorithm

is reached for the largest three); nonetheless, we obtain good quality solutions.
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Instance Solution Times

Exact Solve H1+H2+H3

|A| T (S) (S−) (D) (S)
[activities] [days] [sec] [sec] [sec] [sec]

56 50 41 29 1 1
396 200 † † 8 16
646 300 † † 57 109

1,453 600 † † 1,507 1,231
2,323 900 † † 6,293 4,466
3,150 1,200 † † 15,723 14,987
3,828 1,500 † † 28,495 33,769
4,330 1,800 † † 30,323 32,731
4,764 2,100 † † 31,017 31,076

†Exceeds available computer memory

Table 5: We provide solution times for the problems given in Table 4. All instances
contain five scenarios (|Ω|=5) and five resources (|R|=5). Solutions for the linear
programming relaxation found via the Bienstock-Zuckerberg algorithm (used in the
heuristic) subscribe to the following termination criterion: minimum {eight hours of
computation time, a duality gap of less than or equal to 0.01%}.

Table 6 shows the expected net present value, given by (1), for each case

listed in Table 4. The smallest instance, which is solvable via both exact and

heuristic methods, demonstrates equal objective function values. We note that

the linear programming relaxation objective function values tend to be par-

ticularly tight for the following three reasons. First, despite the fractionation

in the LP relaxation solution, activities are usually completed by the end of

the horizon; so, the effect of the fractionation is that parts of activities can be

moved around in the schedule, rather than “canceled” altogether. This move-

ment affects the objective function value only by the discount factor, which,

for our daily-fidelity model, is 0.02%. And, many fractionated activities tend

to be adjacent in time because of the precedence constraints, implying that

large costs cannot be relegated to the end of the horizon at an unrealistically

highly discounted value. Second, our objective function lacks large fixed charges;

correspondingly, the values assessed are all associated with the same “type” of

decision variable, namely, the execution of an activity. Third, in the optimal

integer-programming solution, the resource constraints tend to be reasonably

tight; that is, the linear programming solution is not able to “cram” fractions into

the bottleneck resource constraints in a way that the integer solution precludes.
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In fact, TopoSort handles the resource constraints well; other authors have

observed this same behavior with similarly structured problems, e.g., Brickey

et al. [2019]. Furthermore, this performance extends to instances with as many

as 30 scenarios, which we can solve to within 3.06% of optimality within about

thirty hours of computation time, even for the largest instances tested here

(where the bulk of the computation is spent in input and output procedures).

The objective function values for all instances show negligible differences be-

tween those produced by the deterministic (D) versus stochastic (S) and (LS−)

models. This might suggest that incorporating stochasticity is not important.

However, we further analyze the solutions via three metrics: makespan, feasi-

bility, and expected count of completed activities, and conclude that the results

from the stochastic program are more realistic, and therefore implementable in

a production setting, while not sacrificing significant objective function value.

Instance Objective Function Values Optimality Gap

Exact Solve H1+H2+H3 BZ (
Ẑ
(LS−)

−Z(S)

Z(S)

)‡
|A| T (S) (S−) (D) (S) (LS−)

[activities] [days] [$M] [$M] [$M] [$M] [$M] [%]

56 50 0.96 0.96 0.96 0.96 0.96 0.02
396 200 † † 14.79 14.78 14.78 0.03
646 300 † † 33.14 33.12 33.12 0.01

1,453 600 † † 101.00 100.69 100.75 0.07
2,323 900 † † 187.90 186.84 186.99 0.09
3,150 1,200 † † 267.24 265.05 265.35 0.12
3,828 1,500 † † 335.66 332.20 332.66 0.19
4,330 1,800 † † 375.02 370.42 370.94 0.16
4,764 2,100 † † 409.83 403.50 404.35 0.56

†Exceeds available computer memory

Table 6: We provide expected net present value for the problems given in Table 4.
All instances contain five scenarios (|Ω|=5) and five resources (|R|=5).
‡Ẑ(LS−) corresponds to an upper bound on the objective value of problem (LS−)
obtained via the dual bound; Z(S) corresponds to the objective value of the best
feasible solution found for problem (S).

In order to assess the quality of the solutions, we introduce a variety of

metrics, the first of which is the makespan, given by µ and defined in Equation

(10) as the last time period with an activity under execution, as follows:
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µ = max
a∈A,ω∈Ω

{∑
t∈T

t ·Xω
at + dωa − 1

}
(10)

We also measure the feasibility of a schedule, which is necessarily satisfied

for any solution of the stochastic programming models, (S) and (S−). For the

deterministic model (D), feasibility implies, for the original five scenarios in Ω,

the satisfaction of integrality, and constraints (3) and (4) (shown again here):

t∑
t′=1

Xω
at′ ≤

t−dω
a′∑

t′=1

Xω
a′t′ a ∈ A; a′ ∈ Pa; ω ∈ Ω

∑
a∈A

t∑
t′=max{1,t−dωa +1}

qar ·Xω
at′ ≤ q̄r r ∈ R; ω ∈ Ω

Invariably, there exists some time period(s) in which one or more of these

precedence and/or resource constraints is not satisfied, and our measure φ is

given as the last feasible time period in the schedule, i.e., the last time period

before rescheduling is required to resolve the infeasibility:

φ = max
t̂∈T

{
t̂ such that (3) and (4) both hold for all t ≤ t̂

}
(11)

That is, in the absence of scenario consideration that the stochastic pro-

gram affords, the schedule in the “out years” cannot be executed without a

correction policy; it is precisely the ambiguity of determining such a policy that

motivates us to avoid re-solving model instances that become infeasible. The

longer term schedules we produce are used to commit equipment and other re-

sources throughout the planning horizon. So, postponing the schedule leads to

a misallocation of resources whose resulting cost is difficult to quantify. Activ-

ities cannot be skipped because precedence would be violated. (For example,

ore cannot be extracted from a stope before the area is drilled and the rock

blasted.) Mine planners do reschedule, because unanticipated occurrences hap-

pen frequently. However, an optimization model affords a mine planner with
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the best possible action plan given the current information, and minimizing the

number of rescheduling activities minimizes disruption to this plan.

Finally, unlike in typical project scheduling in which all activities are ex-

ecuted, activities are optional in an underground mine. Deterministic models

have the clairvoyance not to schedule activities that offer little value. Equation

(12) defines the measure η as the expected count of completed activities:

η =
1

|Ω|
∑
ω∈Ω

∑
t∈T

∑
a∈A

Xω
at (12)

We record each of these metrics, µ, φ, and η in Table 7 for the nine instances

given in Tables 5 and 6 in both the deterministic, (D), and stochastic, (S), set-

tings. Corresponding to intuition, the makespans are all longer for the stochastic

programming solutions for which the corresponding model incorporates uncer-

tainty from a variety of scenarios, resulting in some longer durations that (S)

accommodates owing to feasibility requirements. As expected, the deterministic

model becomes infeasible early on in the schedule relative to the entire horizon,

while the stochastic program maintains feasibility for the entire horizon. We

now see that the small degradation in objective function in the stochastic pro-

gram (Table 6) is more than offset by the gain in feasibility with respect to the

five scenarios. Finally, the number of activities executed is similar for solutions

from both the stochastic and deterministic programs, indicating that the real

quantitative difference lies in the makespan. This signifies that the uncertainty

prolongs the duration of the activities and, hence, the schedule, but does not,

generally speaking, transform a profitable activity into an unprofitable one.
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Instance Measures of Utility

(D) (S)

|A| T µ φ η µ φ η
[activities] [days] [days] [days] [activities] [days] [days] [activities]

56 50 10 2 27 11 50 27
396 200 69 2 229 88 200 229
646 300 117 2 423 149 300 423

1,453 600 296 4 1,117 368 600 1,119
2,323 900 685 3 1,952 874 900 1,953
3,150 1,200 929 4 2,766 1,194 1,200 2,764
3,828 1,500 1,159 2 3,366 1,480 1,500 3,364
4,330 1,800 1,280 4 3,812 1,671 1,800 3,814
4,764 2,100 1,339 4 4,179 1,715 2,100 4,178

Table 7: We measure µ (makespan), φ (the last feasible time period in the schedule),
and η (expected count of completed activities) for solutions found via the deterministic
and stochastic optimization models. Model (D) uses a single scenario derived from
the mean, while (S) uses five scenarios (|Ω|=5); both models consider five resources
(|R|=5).

6. Conclusions

Assuming perfect knowledge of value and duration for each activity in an

underground mining operation may yield inaccurate mine schedules. Mine plan-

ning decisions require input parameters for which only estimates are avail-

able. We present a realistic, but intractable, stochastic programming model

and demonstrate that by relaxing certain constraints and developing a heuristic

that exploits the resulting mathematical structure, we can obtain good-quality

solutions, feasible for practical time horizon lengths, even in the presence of the

relaxed (non-anticipativity) constraints, within hours. We further demonstrate

empirically that the solution quality improves relative to that from a determin-

istic equivalent based on point estimates of value and duration data.

Alternate heuristic solution strategies might incorporate a priority list πa of

activities a for (S) from a mine planner. Additionally, our solution approach

could be adapted for solving problems in more general settings. In particular,

the principle of first solving a two-stage linear programming problem and then

heuristically enforcing non-anticipativity and integrality constraints can be ap-

plied to general MSIP problems with decision-dependent uncertainty. Finally,

we assume that while duration is uncertain, resource consumption is determin-
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istic. Future work might incorporate the ideas of Demeulemeester et al. [2000]

to relax this assumption, though a corresponding solution technique for large

instances remains elusive.
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Appendix - A

Algorithm 1: Simple Sort H2

Data: LP relaxation values Y ′ from having solved (LS−) in H1 with OMP
Result: List of mean starting times, MS, and sorted list of activities, SL

1 compute mean starting time, MS[a], of each activity a ∈ A: MS[a]←
∑

t∈T t · Y
′
at;

2 construct set, A′, of activities that will be executed: A′ ← {a ∈ A : MS[a] ≥ 0.5};
3 sort activities in set A′ non-decreasing by MS[a] and assign to ordered list SL;
4 return lists MS and SL;

Algorithm 2: List-Scheduling Heuristic H3

Data: List of mean starting times, MS, and sorted list of activities, SL
Result: Integer feasible solution, (X,Y )

1 Yat ← 0 for each activity a ∈ A, time period t ∈ T ;
2 Xω

at ← 0 for each activity a ∈ A, time period t ∈ T , scenario ω ∈ Ω;
3 while list SL is not empty do
4 select the first activity, a′, in list SL and delete it from list SL;
5 t′ ← bMS[a′]e;
6 while period t′ ≤ T do
7 Ya′t′ ← 1;
8 Xω

a′t ← 0 for each time period t ∈ T , scenario ω ∈ Ω;
9 for ω ∈ Ω do

10 feas_scenario← FALSE;
11 for t∗ ∈ {max{1, t′ − δ}, . . . ,min{T, t′ + δ}} do
12 if assigning Xω

a′t∗ to 1 is precedence- and resource-feasible then
13 Xω

a′t∗ ← 1;
14 feas_scenario← TRUE;
15 break;
16 end
17 end
18 if feas_scenario = FALSE then
19 break;
20 end
21 end
22 if feas_scenario = FALSE then
23 Ya′t′ ← 0;
24 t′ ← t′ + 1;
25 end
26 end
27 end
28 return (X,Y );

Appendix - B

Proposition 1. A solution, (X,Y ), generated by Algorithm 2 is a feasible so-

lution for problem (S).

Proof. We focus only on non-anticipativity constraints (7) and (8) since prece-

dence constraints (3), resource constraints (4), and time-interval constraints (5)
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and (6), are trivially satisfied by construction (see Algorithm 2, lines 11 and

12).

We will prove that solution (X,Y ) satisfies non-anticipativity constraints (7)

and (8) by induction.

• Base case, activity at position 1 in list SL: The non-anticipativity con-

straints associated with activity a1 = SL[1] hold since Pa1 = ∅ and, by

construction, Xω
a1t∗ = 1 for each scenario ω ∈ Ω, where t∗ =

max{1, bMS[a1]e − δ}.

• Inductive step: Now, we prove that if the non-anticipativity constraints

hold for each activity SL[1], . . . , SL[n], then the non-anticipativity con-

straints hold for each activity SL[1], . . . , SL[n+ 1].

We have to check whether the non-anticipativity constraints hold for ac-

tivity an+1 = SL[n+1]. First, we note that, by construction, Algorithm 2

decides whether activity an+1 is scheduled or not. If an+1 is scheduled, it

is scheduled in all scenarios. If it is not scheduled, it is not scheduled in

any scenario. Therefore, we have two cases to check:

1. Activity an+1 is not scheduled: In this case, the non-anticipativity

constraints associated with activity an+1 are trivially satisfied for

each scenario pair {ω1, ω2} ⊆ Ω.

2. Activity an+1 is scheduled: Given any scenario pair {ω1, ω2} ⊆ Ω, let

t1 and t2 be the time periods at which activity an+1 starts in scenar-

ios ω1 and ω2, respectively. In other words, Xω1
an+1t1 = Xω2

an+1t2 = 1.

Moreover, let t̂ = min{t1, t2}. By the beginning of time period t̂,

scenarios ω1 and ω2 are either differentiated or indistinguishable.

If scenarios ω1 and ω2 are already differentiated by the beginning

of time period t̂, then the non-anticipativity constraints associated

with activity an+1 are trivially satisfied for scenario pair {ω1, ω2}.

On the other hand, if scenarios ω1 and ω2 are indistinguishable by

the beginning of time period t̂, then we know that (i) exactly the
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same activities have been completed in both scenarios; (ii) for each

of these completed activities, its corresponding duration in scenar-

ios ω1 and ω2 are the same; (iii) the starting times of all activities

SL[1], . . . , SL[n] in scenario ω1 are equal to the corresponding start-

ing times in scenario ω2, since, by the inductive hypothesis, activities

SL[1], . . . , SL[n] satisfy the non-anticipativity constraints; (iv) the

activities in {SL[1], . . . , SL[n]} that are not yet completed are under

execution the same amount of time in both scenarios ω1 and ω2. By

(i), (ii), and (iii), it follows that the activities in Pan+1 , which are

contained in {SL[1], . . . , SL[n]}, start and end at exactly the same

period in both scenarios ω1 and ω2. Moreover, by (iv), the resource

availability at time period t̂ is the same in both scenarios ω1 and

ω2. Thus, given that both time periods t1 and t2 correspond to the

first time period at which it is feasible to start activity an+1 in the

respective scenario (see Algorithm 2, lines 11 and 12), we have that

t̂ = t1 = t2. Thus, the non-anticipativity constraints associated with

activity an+1 are satisfied for scenarios ω1 and ω2.

Therefore, solution (X,Y ) satisfies non-anticipativity constraints (7) and

(8).
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