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ABSTRACT: Advancement in solution algorithms and computing power continues to drive the
adoption of optimization techniques within the underground mining sector. However, limitations
in the available data and the choices made during the model setup can create a gap between
optimal solutions and operational reality. This paper presents a mining practitioner’s guide on
effectively utilizing multi-time period knapsack constraints (MPKC) in scheduling underground
mine production, which can close part of that gap. Models with MPKC implemented at different
time fidelities, i.e., weekly, monthly and annual, are compared by evaluating solution quality and
solver performance. We provide recommendations that can assist in developing both optimal and
operationally representative schedules.
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1 INTRODUCTION

Well, let us see if this works as well as advertised. Optimization models are approximate rep-
resentations of real-world systems. Practitioners often must make simplifying assumptions to
ensure feasibility or relax constraints to improve tractability. Any such model’s purpose is to
provide useful information and improve decision-making abilities. With any model formulation,
it is important that the assumptions made do not detract from the model’s applicability to the
operation. Advances in computation power and solution algorithms have enabled researchers to
create and solve model formulations more complex and operationally representative than previ-
ously possible. In this paper, we explore some of the recent advances in constructing models with
a particular focus on underground mine production schedules.

Williams et al. (1973) were the first to make use of operations research principles to develop
an underground production schedule that maximized ore production at a copper operation. The
original intent of the project was to formulate a linear program to produce “good” schedules;
however, the group was unable to define the qualities that comprised a “good” schedule. Revising
their approach, they instead set out to produce a tool to that would help planners evaluate several
schedules and then choose the “best” option; while not necessarily achieving optimality, they
expected to realize a significant improvement over manual scheduling. As computational power
increased with time, researchers began developing integer programs, incorporating binary vari-
ables and allowing for ‘yes-no’ decisions (Trout, 1995; Winkler, 1996). Trout utilized an integer
programming model to schedule the operational sequence, i.e., extraction and backfilling, of 55
stopes at the Mt. Isa copper mine in Australia. With over 3500 variables and 6900 constraints, it
was substantially larger than previous attempts. After 200 hours of computation time, the program



had not converged on an optimal solution; however, the solution did result in a 24% increase in
NPV over the current mine schedule after only 1.6 hours of computation.

Surface mine optimization has been researched and applied to the industry since the 1960s,
(Lerchs and Grossmann, 1964; Johnson, 1968). Today, there are numerous commercially avail-
able tools utilizing optimization techniques to improve surface operations, e.g., Geovia Whittle
Dassault Systemes (2018), Pit Optimizer Maptek Pty Ltd (2016), MineSight Economic Plan-
ner Hexagon AB (2019), to name a few. Over the last two decades, researchers and industry
have worked to develop similar tools for underground mine planning. Today, underground mine
planners utilize SOT+ (MIRARCO Mining Innovations, 2018), often in conjunction with a 3-
dimensional mine design package. SOT+ uses heuristics to develop feasible schedules, iteratively
improving over the previously best known solution, that may or may not provide an optimal solu-
tion.

Recent research has focused on using deterministic (Brickey, 2015; O’Sullivan, 2014; Little
et al., 2008; Topal, 2008; Newman et al., 2003) and stochastic optimization (Carpentier et al.,
2016) to produce robust and optimal underground mine schedules. This paper focuses on model-
ing techniques, existing and new, that can improve the solution quality of deterministic optimiza-
tion applications to underground production scheduling. A substantive review of underground
mine optimization applications can be found in Alford et al. (2007) and Newman et al. (2010).

2  UNDERGROUND MINE PRODUCTION SCHEDULING

Production scheduling is an integral part of the mine planning process. Scheduling underground
operations differs from open pit scheduling and is generally considered more challenging and
complex (O’Sullivan et al., 2015) to accomplish. Optimizing underground schedules, conse-
quently, also differs significantly from open pit scheduling. Underground excavations are repre-
sented as activities, with varying shapes and sizes. Activities can be broadly delineated into (i)
production, i.e., stopes, top-cuts, under-cuts, (ii) development, i.e., ramps, shafts, raises, and (iif)
auxiliary, i.e., sumps, electric stations.

The traditional production scheduling process endeavors to determine a feasible sequence of
these activities such that operational objectives are met (Newman et al., 2010). When optimiz-
ing the schedule, the operational goal(s), e.g. maximizing net present value or minimizing costs,
is represented by the objective function, while sequencing and resource limitations constrain
the model. Operational objectives are often based on corporate goals. Sequencing constraints
(or activity precedence) are derived from geotechnical limitations, and physical or operational
sequencing. Lastly, resource constraints enforce operational limitations such as equipment capac-
ity, milling capacity and even ventilation requirements.

Production schedules can be categorized on the basis of time horizon as either strategic (long-
term) or tactical (short-term). As the names suggest, a strategic schedule is used to provide a
big-picture view of the operation, while the tactical schedule aims to inform activity sequencing
at a weekly, daily or shift fidelity.

2.1 The UG-RCPSP model

The underground production schedule optimization model is used to determine the start dates for
a set of activities in order to maximize the operation’s value (Net Present Value), while adhering to
precedence and resource constraints (King et al., 2017). The Underground Resource Constrained
Production Scheduling Problem (UG-RCPSP) model builds on the work of Brickey (2015), a
particular case of the resource constrained project scheduling problem (RCPSP). The RCPSP is
a known NP-hard problem (Artigues et al., 2013) that consists of scheduling activities over time,



subject to precedence constraints. The following formulation is an example of the Underground
Resource Constrained Production Scheduling Problem that we consider.

Indices and sets:

ae A set of all activities

i€ A, set of predecessors for activity a

acA, set of predecessor activities @ that must be completed one period in advance of activity a

reRrR set of resources, such as production and development capacity, whose limits are enforced on a daily basis
r€R CR setof resources, such as production and development capacity, whose limits are enforced on a monthly basis
teT set of daily time periods

me M set of monthly time periods

te '7'm set of days contained in month m

Parameters:

Ca monetary value associated with completing activity a [$]

Gra quantity resource 7 consumed on a daily timescale when completing activity a [tonnes, meters]

Gra quantity resource r consumed on a monthly timescale when completing activity a [tonnes, meters]

Trt maximum amount of resource r available on day ¢ [tonnes, meters]

Trm maximum amount of resource r available in month m [tonnes, meters]

da duration of activity a [days]

a?a duration of activity a [months]

da duration, and any associated delay duration, of activity a [days]

Ot discount factor for period ¢ [fraction]

Decision variables:
Xat 1 if activity a is completed by the end of time ¢; 0 otherwise

(Z) max Z Z 0¢ca(Xat — Xat—1) (1a)

acAteT
st. Xt 1< Xuy VaecAteT (1b)
Xot < Xat-a, VacAaeA,teT (1c)
S T Xy~ Xopoa,) ST VrEREET (1d)
dq
a€A
q N o
> (KXot = Xy g) St VreR,meM (le)
teT,, acA ¢
Xqt binary Va € At €T (1)

The objective function (1a) maximizes discounted cash flow. Constraints (1b) and (1c) provide
the sequence of activities, i.e., precedence, and enforce when an activity can begin based on pre-
decessor requirements, respectively. Constraint (1d) represents a daily capacity for all resources,
whereas constraint (1e) represents a multi-time period resource constraint. The latter constraint
is discussed in detail in Section 2.1.1. Finally, constraint (1f) ensures that the decision variable
is binary. This formulation was used to optimize the tactical production schedule at Barrick’s
Turquoise Ridge operation (Brickey et al., 2019).

Using novel algorithms (Bienstock and Zuckerberg, 2009; Muiioz, 2012), in conjunction with
heuristics (Chicoisne et al., 2012), it has been shown that it is possible to solve very large integer
problems relatively quickly. Researchers at Adolfo Ibafiez University and University of Chile,
Santiago, have developed a tool, OMP Solver that leverages these new algorithms to solve both
surface and underground scheduling problems. The following sections present various features
that can be used with OMP Solver to create models with greater tractability and more opera-
tionally representative schedules.



2.1.1  Multi-Time Period Knapsack Constraints

Mining operations often use average production rates to create strategic and tactical schedules.
These averages might reflect the daily, weekly or even monthly production rates for a given min-
ing method or activity, often corresponding to the fidelity of the desired schedule. Considering
the highly variable activity durations seen at several underground mining operations because of
the non-homogeneous nature of the mine design, the average production rate method may leave
available production unscheduled. For example, the assigned production rate for five stopes is 500
tons per day; however, the average mine production rate over the year is 1200 tons per day. When
using an integer program, this means that production capacity will be under-utilized by 200 tons
per day. Many practitioners have incorporated continuous variables (Nehring and Topal, 2007;
Little et al., 2008), in conjunction with integer variables, to account for this occurrence; yet, there
are still challenges associated with solving such large-scale mixed integer problems.

To retain an integer formulation, an alternative was developed that allowed the same flexi-
bility seen in mixed integer programs while allowing the use of newer solution methods. We
present Multi-time Period Knapsack Constraints (MPKC) that allow practitioners to create sched-
ules with variable production rates, by achieving or limiting resource capacities measured over
multiple time periods. For example, a mine’s extraction rate can vary from day-to-day, but the
ore production target is set at the annual level. Figure 1 shows how an operation might have a
maximum daily production capacity and also a weekly capacity that does not equate to the same
production quantity. In this case, the operation’s goal will be to produce a schedule that achieves
the weekly target. Incorporating MPKC reduces the negative impacts of varying durations and
production rates associated with underground activities, while still retaining integrality.
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Figure 1. Visualizing a multi-time period knapsack constraint

The implementation of MPKC must be carefully considered to achieve the desired benefit.
One challenge in effectively utilizing this tool is in correctly matching the evaluated time horizon
to the desired schedule fidelity. To illustrate the effects of MPKC, we evaluated two scenarios
with different fidelities of MPKC, annually and monthly. We used the model described in Section
2.1 for these scenarios, each solved for a 10-year time horizon at the daily fidelity. The MPKC
was implemented on the ore production capacity while also slightly relaxing the daily ore pro-
duction capacity, i.e., allowing for more capacity than the average daily rate. Annual production
targets ramp up through the initial years, leveling off in year 2023. In the case of the monthly-
fidelity MPKC model, the annual production targets were broken down into equal monthly values.

Figures 2 and 3 show monthly production profiles, subdivided across years (dot-dashed line)
and quarters (dashed line). For the annual-fidelity, Figure 2, the solver schedules a majority of
the production in the first 9 months of each calendar year. This behavior is attributable to the
time value of money. Hence, the solver, wanting to maximize operational value, will schedule as
much production early in the year as possible, instead of distributing it more evenly throughout
the year. We refer to this as “front-loading”. Operationally, this “front-loading” is neither feasible,
nor desirable. By modifying the MPKC to represent monthly production targets, we see that front-
loading is virtually eliminated and the production profile is significantly more consistent. Front-
loading may still be occurring within the month which may require using MPKC with shorter time
horizons; however, considering the long-term nature of the schedule, this is acceptable accuracy.

2.1.2  Enforcing start and completion dates
The desired outcome of an optimized underground production schedule is a collection of activity
start dates that maximize value while adhering to precedence and resource constraints. In some
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Figure 2. Monthly ore production scheduled over 10 years using annual multi-time period knapsack
constraints
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Figure 3. Monthly ore production scheduled over 10 years using monthly multi-time period knapsack
constraints

instances, a mining operation may have fixed dates as to when an activity can begin or a dead-
line for the completion of an activity. Precedence among activities are used to control activity
sequencing and often are associated with operational or geotechnical limitations. For the most
part, it is enough to formulate the model with these precedence and resource constraint com-
ponents to capture the essence of the operation. There may be instances when activity start and



completion requirements are needed to satisfy a mine’s strategic goals. For example, a new shaft
and other associated capital development may need to be completed before the mine’s planned
expansion can proceed. Disregarding such deadlines creates a less accurate model and may result
in improper resource allocation, i.e., equipment, and unrealistic production profiles.

To provide a fixed start date for an activity, we add a “dummy” activity, i.e., an artificial activity
that consumes no resources, to create a time delay between the start of the schedule time horizon
and the set start date activity. To set a completion deadline for an activity, we use MPKC to provide
some flexibility as to when the activity can start, while ensuring that the activity is completed
by the desired deadline. In many cases, the activity is not necessarily required to be completed
on a given date, but that it be completed prior to the deadline. To accomplish this, the activity is
evaluated as a unique resource. That resource is constrained by a MPKC where the associated time
horizon ends at the required completion date. The use of MPKC allows the schedule flexibility to
ensure that the activity is completed while also considering the global scheduling problem.

2.1.3  Ventilation

In an underground mining operation, the ventilation system helps to maintain a hospitable envi-
ronment for workers (Hartman et al., 1997). It also accounts for a significant portion of a mine’s
total energy requirement. The systems are designed during the initial mine planning phase and
can be difficult to modify once in operation. As regulatory levels for many contaminants have
been substantially lowered over the past couple of decades (Bugarski et al., 2012), underground
mines, with limited capacity to increase ventilation quantities, are seeing the effect manifest as
a loss in production (Brickey, 2015). To this end, incorporating ventilation into the overall plan-
ning process can help utilize existing ventilation infrastructure more efficiently and provide better
insight into future expansions (Brickey and Lopes, 2017).

Modeling ventilation is challenging, owing to its highly dynamic nature. To incorporate ven-
tilation into the production scheduling process, we begin by treating ventilation as a consumable
resource (Brickey, 2015). In this simplified method, each activity is assigned a fresh air require-
ment, based on empirical data or an engineer’s estimate. Ventilation capacity is determined by
the amount of air flow possible with existing ventilation infrastructure and other considerations.
In this manner, ventilation becomes a resource capacity constraint, similar to tonnage (see 1d
in Section 2.1). Another approach to controlling ventilation is to restrict the number of concur-
rent activities on each working level or within a ventilation district. For example, a mine may be
divided into multiple ventilation districts and each can only receive a fixed maximum quantity of
air. This fixed amount of air directly limits the number of activities that can be supported. These
methods, while simplistic, can be effective at evaluating the impact of ventilation on production.

3 CONCLUSIONS

Improved computation power and solution algorithms have allowed practitioners to formulate
and solve increasingly complex models for underground production scheduling. These advances
present another opportunity for each practitioner: enhancing model representation to more closely
reflect reality. In this paper, we outlined useful tools and guidelines that an underground mine
scheduler can use to create more operationally representative schedules. MPKC can overcome
the limitations of using averages for constraints and induce some operational flexibility into the
schedule, while still retaining integrality and take advantage of the new solution algorithms. In
addition, known activity start and completion information should also be incorporated into the
model to more closely adhere to the strategic mine plan. Lastly, ventilation is a critical consid-
eration for underground mines and an approximation should be included in scheduling models.
These tools help improve model and schedule quality, lessening the gap between theory and
implementation.
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