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Abstract:	
  
We consider an underground production scheduling problem which consists of determining the proper time 
interval(s) in which to complete each mining activity so as to maximize a mine’s discounted value, while adhering to 
precedence, activity durations, and production and processing limits. We present two different integer programming 
formulations for modeling this optimization problem. Both formulations possess a resource-constrained project 
scheduling problem structure. The first formulation uses a fine time discretization and is better suited for tactical 
mine scheduling applications. The second formulation, which uses a coarser time discretization, is better suited for 
strategic scheduling applications. We illustrate the strengths and weakness of each formulation with examples. 

Introduction: 
Project scheduling is an important aspect of underground mine planning that consists of determining the start dates 
for a given set of activities so as to maximize the value of a project, while adhering to operational and resource-
availability constraints. Important activities that require scheduling include development, drilling, stoping or other 
ore-extraction techniques, and backfilling. Precedence relationships impose an order in which activities can be 
carried out based on their location in the mine. For example, ``the activity a associated with development of an area 
must be completed before the activity a’ associated with extraction of that same area can begin.” Resources include 
attributes of the mining operation such as the amount of extraction and mill capacity available per time period, and 
are determined by capital and equipment availability, among other factors. Correspondingly, for our setting, 
resource-availability constraints consider the amount of material that can be extracted and sent to the mill (i.e., 
processed) per time period.  

We define the Underground Mine Project Scheduling Problem, or UG-PSP, as that of scheduling a set of mining 
activities in such a way as to maximize the net present value of the project, while adhering to precedence and 
resource-availability constraints; in general, optimization models for underground scheduling are more complex than 
their open pit counterparts (O'Sullivan, Brickey, and Newman, 2015). The UG-PSP is a particular case of the 
Resource-Constrained Project Scheduling Problem (RCPSP), a class of optimization problems known for their 
difficulty (Artigues et al., 2008). It should be noted, however, that the UG-PSP may have a multitude of feasible 
solutions. Many mine planning software packages typically rely on heuristics. In this article, we are concerned with 
using mixed-integer programming to determine a provably optimal schedule, i.e. the schedule with the highest net 
present value. 

Trout (1995) first proposed a mixed-integer program to solve a 55-stope UG-PSP over a two-year time horizon 
using multiple time fidelities. The detailed formulation did not gain widespread adoption due to slow solution times. 
Little et al. (2013) demonstrate the value of implementing scheduling optimization in the mine design process. 
Others have created case-specific formulations for a variety of underground mines (Carlyle and Eaves, 2001; 
Nehring et al., 2010; Martinez and Newman, 2011; Epstein et al., 2012). Newman and Kuchta (2007) provide a 
model for scheduling the Kiruna mine in which activity duration spans multiple time periods; see also Sarin and 
West-Hansen (2005), O'Sullivan and Newman (2014), and Brickey (2015) for similar models applied to different 
mines. Little et al. (2011) outline several aggregation techniques to reduce the number of variables a UG-PSP 
problem containts, while Salama et al. (2015) examine how changing the production rate changes the value of the 
UG-PSP solution. 

UG-PSP Formulations: 
We begin by introducing notation for our integer programming (IP) formulations of the UG-PSP, and by noting our 
assumptions. Our formulations are streamlined, generalized, and highly versatile. That is, they contain precedence 
and resource constraints, which can be tailored to a specific application, and which are the primary two types of 
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constraints found in strategic underground models.  Specifically, with appropriate rewriting, such a formulation can 
be applicable to sublevel caving mines (e.g., Kuchta et al., 2004), to block caving mines (e.g., Newman et al., 2013), 
to sublevel stoping mines (e.g., King et al., 2015), and to cut-and-fill and room-and-pillar mines (O’Sullivan and 
Newman, 2015). We focus on hard-rock mining methods. Coal extraction would require additional considerations.  
We next present our two, time-indexed formulations, expressed in the “by” form to improve computational 
tractability (Lambert et al., 2014). 

Sets: 
	
  𝒯	
  : uniform time intervals over which scheduling occurs 
𝒜 : activities available for scheduling 
𝒫% : predecessors of activity 𝑎	
   ∈ 	
  𝒜 
ℛ ∶	
  scarce resources that are consumed 

Parameters: 
𝑙++ : number of time intervals that must elapse between the start of activity 𝑎	
   ∈ 	
  𝒜  and the start of its predecessor 
activity 	
  𝑎 ∈ 	
  𝒫%, referred to as lag 
𝑑+: number of time intervals required to complete activity	
  𝑎	
   ∈ 	
  𝒜 (calculated by rounding up the exact duration to 
the nearest integer) 
𝑝+/	
  : objective function value associated with starting activity 𝑎	
   ∈ 	
  𝒜 in time interval 𝑡 ∈ 	
  𝒯 
𝑞+2 : total quantity of resource type 𝑟 ∈ 	
  ℛ	
  used to complete activity	
  𝑎	
   ∈ 	
  𝒜 
𝑅2/ : total amount of resource type 𝑟 ∈ 	
  ℛ	
  available in time interval 𝑡 ∈ 𝒯 

Assumptions: 
A1. In order to begin an activity 𝑎	
   ∈ 	
  𝒜,	
  it is necessary to have started all activities 𝑎 ∈ 𝒫% at least 𝑙++ time 
intervals before 𝑎. This is not common to all underground production scheduling models. See, for example, 
O'Sullivan and Newman (2014).  
A2. Once an activity is started, it cannot be interrupted.  
A3. If the duration 𝑑+ of an activity 𝑎	
   ∈ 	
  𝒜 is greater than one, then the amount of resources consumed per 
time interval while completing activity 𝑎 is equal to 678

97
 for all 𝑟 ∈ 	
  ℛ. 

Note that Assumption A2 can be relaxed for some or all activities in the following way. If preemption is allowed for 
an activity 𝑎	
   ∈ 	
  𝒜 such that 𝑑+ > 1, then activity 𝑎 can be replaced by a set of activities 𝑎<, 𝑎=, … , 𝑎97 , each with 
duration one, such that these smaller activities correspond to completing portions of the whole. It is necessary to re-
define the precedence relationships and relevant parameters accordingly. 

UG-PSP Tactical Formulation: 
In the UG-PSP tactical formulation, we construct time intervals that are sufficiently short to capture the detail 
required to accurately model the duration of underground activities. If a mine schedules activities that require a 
minimum of one day to complete, a daily fidelity model is appropriate.  

Variables: 
𝑥+/ : 1 if activity 𝑎 is started by time interval 𝑡; 0 otherwise 

Objective Function: 

UG-PSP tactical 
max 	
   𝑝+/(𝑥+/

/∈𝒯+∈𝒜

− 𝑥+,/E<) (1) 

Constraints: 
𝑥+,/E< ≤ 	
   𝑥+/ 
 

∀	
  𝑎 ∈ 𝒜, 𝑡 ∈ 	
  𝒯 (2) 

𝑥+/ ≤ 𝑥+,/EI77 ∀	
  𝑎	
   ∈ 	
  𝒜, 𝑎 ∈ 𝒫+, 𝑡 ∈ 	
  𝒯 (3) 
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𝑞+2
𝑑+

(𝑥+/ − 𝑥+,/E97)
+∈𝒜

≤ 𝑅2/ ∀	
  𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (4) 

𝑥+/ ∈ {0,1} ∀	
  𝑎	
   ∈ 	
  𝒜, 𝑡 ∈ 	
  𝒯 (5) 
 
The objective function, (1), cumulates the values associated with starting activities in a specified time interval. This 
may correspond to discounted metal or discounted cash flow. Constraints (2) force a completed activity to remain 
completed. Constraints (3) enforce precedence relationships. Constraints (4) impose a bound on the resource 
consumption in each time interval. Constraints (5) restrict all variables to be binary. 
 
The UG-PSP tactical formulation increases in size with the number of time intervals, making instances spanning 
long horizons using a fine fidelity intractable in practice. In addition, the model assumes detailed knowledge 
regarding resource and activity attributes. In practice, when planning activities far in the future, these details are 
difficult to estimate with precision. For these two reasons, the UG-PSP tactical formulation is very well suited for 
medium-term scheduling, but another model is required for strategic scheduling.  

UG-PSP Strategic Formulation:  
In the UG-PSP strategic formulation, we approximate the UG-PSP problem by coarsening the time fidelity; this may 
be advantageous when a finer time fidelity results in a significant number of time periods and a large number of 
binary variables. Specifically, we create a set of time intervals by aggregating ∆≥ 1 intervals of 𝒯.  If an activity 
𝑎	
   ∈ 	
  𝒜 exists such that 𝑑+ < ∆,	
  the resulting model fails to correctly capture the original precedence relationships.  
 
Consider the following example: Suppose that there are eight development activities which occur along the same 
heading, each corresponding to advancing 5m in a drift (see Figure 1). Each of these activities requires one day to 
complete and is linked with the appropriate precedence. Aggregation into one-week time intervals, i.e., ∆= 7, results 
in a lag of zero between consecutive development activities, because the aggregated time intervals are long enough 
for both the predecessor and successor activity to occur in the same aggregated time interval. If the weekly 
development capacity is 50m, the aggregated model would allow all eight activities to be completed in a week. This 
is not possible, because completing all eight activities would require eight days. The aggregated model fails to 
prevent this infeasibility.  
 
To address this problem, we add precedence relationships: For every pair of activities (𝑎, 𝑎) that cannot be carried 
out over the course of ∆ consecutive time intervals, we define a precedence relationship such that  𝑎 	
  ∈ 𝑃+ must be 
completed at least one aggregated time interval in advance of 𝑎. We call these delay precedence relationships. 

 
Figure 1: Development activities are represented by nodes, and the precedence relationships are depicted with solid 
arrows. The selected activity, highlighted in gray, and the successor activity that is 35m away, cannot be completed in the 
same week, and a delay precedence relationship, shown with dashed arrow, is added.  

The resulting model formulation follows. 

Sets: 
	
  𝒯	
  : aggregated time intervals which are Δ time intervals larger than those in 𝒯. 
𝒫+ : delay predecessors of activity 𝑎	
   ∈ 	
  𝒜.  

Parameters: 
	
  	
  𝑙++ : number of aggregated time intervals that must elapse between the start of activity 𝑎	
   ∈ 	
  𝒜  and the start of its 
predecessor activity 	
  𝑎 ∈ 	
  𝒫% (If both 𝑎 and 𝑎 can be completed in ∆ time intervals, let	
  	
  𝑙++=0; else, define 	
  𝑙++ =
⌈I77
U
⌉.) 
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𝑑+:  number of aggregated time intervals required to complete activity 𝑎	
   ∈ 	
  𝒜   	
  (If 𝑑+ is not an integer multiple of 
∆, the value 𝑑+ can be obtained by rounding up to the nearest positive integer.) 
𝑝+/: objective function value associated with starting activity 𝑎	
   ∈ 	
  𝒜 in aggregated time interval  𝑡 ∈ 𝒯 
𝑅2/	
   : total amount of resource type 𝑟 ∈ 	
  ℛ	
  available in aggregated time interval 𝑡 ∈ 𝒯 

Variables: 
𝑥+/ : 1 if activity	
  𝑎 is started by aggregated time interval  𝑡; 0 otherwise 

Objective Function: 

UG-PSP strategic 
max 	
   𝑝+/(𝑥+/

/∈𝒯+∈𝒜

− 𝑥+,/E<) (6) 

Constraints: 
𝑥+,/E< ≤ 	
   𝑥+/ 
 

∀	
  𝑎 ∈ 𝒜, 𝑡 ∈ 𝒯 (7) 

𝑥+/ ≤ 𝑥+,/EI77	
   ∀	
  𝑎	
   ∈ 	
  𝒜, 𝑎 ∈ 𝒫+, 𝑡 ∈ 𝒯 (8) 
𝑥+/ ≤ 𝑥+,/E<	
   ∀	
  𝑎	
   ∈ 	
  𝒜, 𝑎 ∈ 𝒫+, 𝑡 ∈ 𝒯 (9) 

𝑞+2
𝑑+

(𝑥+/ − 𝑥+,/E<)
+∈𝒜

≤ 𝑅2/ ∀	
  𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (10) 

𝑥+/ ∈ {0,1} ∀	
  𝑎	
   ∈ 	
  𝒜, 𝑡 ∈ 𝒯 (11) 
 
The objective function, (6), cumulates the value associated with starting an activity in a specified time interval. 
Constraints (7) force a completed activity to remain completed. Constraints (8) enforce precedence and constraints 
(9) force the pair of activities contained in the delay precedence relationship to occur in different time intervals. 
Constraints (10) bound resource consumption in each time interval. Constraints (11) restrict all variables to be 
binary. 
 
Two important complications arise when using the UG-PSP strategic formulation. The first is that the number of 
delay precedence relationships grows rapidly as ∆ increases. The second is that a feasible solution in this 
formulation might not necessarily correspond to a solution that is feasible in the UG-PSP tactical formulation. This 
is the same limitation suffered by integer programming formulations typically used in open pit production 
scheduling (Johnson, 1968). As such, this formulation is well suited to scheduling large time horizons and making 
strategic decisions. 

Computational Examples: 
We compare the performance of the two formulations using data from two open stoping mines: (i) a small, artificial 
one and (ii) a real-world mine.  While both of these examples use open stoping as the mining method, as we note 
earlier, the formulations are sufficiently general to incorporate other mining methods as well. 

Data:  
The single-segment data set is a small section of an underground open stoping mine containing four stopes.  In order 
to extract a stope, the necessary development, stope drilling, and backfilling must have already been completed. 
Table 1 provides an outline of the activities and their attributes that are used, and Figure 2 outlines the precedence 
structure and activities in the single-segment data set. 

Table 1: Summary of activity characteristics in the underground mine data set. Resource attributes are given as the total 
resource consumed. The delay column represents the number of days that must pass after the activity is completed before 
its successor activity can begin. 

Activity 
Type 

Quantity Cost/Profit Activity 
Rate 

Duration 
(days) 

Delay 
(days) 

Total Resource Consumed by 
Activity Type 

Mine 
Tonnes 

Development 
Meters 

Drill 
Meters 
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Horizontal Drift 2 -$10,000/m 5 m/day 10 0 2500 50 0 
Cross-Cut 8 $100/t 5 m/day 4 0 1000 20 0 

Stope Drilling 4 -$100/m 120 m/day 6 0 0 0 720 
Stope Mucking 4 $250/t 500 t/day 10 1 5000 0 0 

Backfilling 4 -$5/t 1000 t/day 4 7 4000 0 0 
Note: The lag parameter is the sum of the predecessor’s duration and the delay between the predecessor and successor. 

 

 

Figure 2: Precedence structure for the underground mine (solid arrows). Naming convention: (T-B) indicates whether the 
activity is located on the top or bottom level of the stope, followed by the activity type, primary resource consumed ‘()’, 
and duration of the activity ‘[]’. 

We also create two larger data sets by copying the single-segment data set. The “triple” and “penta” data sets consist 
of three and five copies of the single-segment data set, respectively. The triple and penta stopes are differentiated by 
their stope values: 100%, 80%, and 60%, and 100%, 90%, 80%, 70%, and 60% of the original values, respectively. 
   
The UG-PSP tactical formulation is modeled at daily time fidelity, and the UG-PSP strategic formulation uses an 
aggregated 14-day time fidelity. The UG-PSP strategic formulation activities are disaggregated, for example, into 10 
stoping activities that each require one day, contain 500 ore tons, and are appropriately linked with precedence; 
delay constraints are constructed using the disaggregated activities.  Daily production limits are 15 meters of 
development, 1000 tonnes of total extraction, 1000 tonnes of backfilling, and 240 meters of drilling.  The discount 
rate for all models and data sets is 0.10% for every 14 days, or a daily discount rate of 0.0683%, and the objective is 
to maximize NPV. Note that although, in practice, different discount rates might apply to models of varying time 
fidelity, in this case, we normalize the discount rates to allow for a comparison between the objective function 
values and solutions of the two models. 

Numerical Results: 
The UG-PSP tactical and UG-PSP strategic formulations for the single-segment, triple, and penta data sets are coded 
in the algebraic modeling language AMPL (AMPL 20140908, 2015) and solved to the default optimality tolerance 
using CPLEX 12.6.0.1 (IBM CPLEX optimizer, 2015) on a Dell PowerEdge R410 machine with 16 processors (2.72 
GHz each) and 28 GB of RAM. Table 2 provides a summary of the different models and the solution times for each 
formulation and data set. 

Table 2:  Summary of problem size, objective function value, and solution times for the various model formulations and 
problem instances.  

Formulation Number of 
Variables 

Number of 
Resource 

Constraints 

Number of Precedence 
and Delay Constraints 

Objective 
Function 

Value (NPV) 

Solution 
Time 
(sec) 

Time 
Horizon 
(days) 

UG-PSP tactical (Single) 2,660 380 3,135 2,901,017 0.08 95 
UG-PSP strategic (Single) 1,099 28 2,359 2,918,144 0.29 98 
UG-PSP tactical (Triple) 10,166 468 11,415 6,196,407 86.8 115 

UG-PSP strategic (Triple) 4,308 32 9,099 6,308,911 7.06 126 
UG-PSP tactical (Penta) 26,740 764 31,515 8,891,858 13,817.74 191 

UG-PSP strategic (Penta) 10,990 56 23,590 9,062,961 99.57 196 
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The key differences between the UG-PSP tactical and the UG-PSP strategic formulations are the objective function 
value, solution time, and solution, i.e., schedule. We observe that the NPV is slightly different for a given data set 
between the two formulations.  The UG-PSP strategic always has a higher optimal NPV than that of the UG-PSP 
tactical, because the UG-PSP strategic formulation is an approximation of UG-PSP. (The discount rate calculations 
are tied to the time fidelity of the model.) Nonetheless, the NPV difference between the two formulations for the 
same data set is never greater than 2%, and although the two formulations produce slightly different NPVs, the 
overall extraction quantities resulting from the solution of both UG-PSP models are very similar. Figure 3 shows the 
production tonnes associated with the solution for the triple data set using both formulations, demonstrating the 
similarities in output.  

 

Figure 3: Tonnes extracted in every aggregated time period, i.e., 14 days. The production tonnage for the UG-PSP tactical 
formulation is calculated by summing the production tonnage in each 14-day interval. 

The solution time for each formulation also varies drastically; for example, the penta data set using the UG-PSP 
tactical formulation requires 13,817 sec., which is much longer than the solution time for the UG-PSP strategic 
formulation, 99.57 sec. The UG-PSP tactical formulation does not scale well; solution times for single, triple, and 
penta data sets are 0.08, 86.8, and 13,817.74 seconds, respectively.  Figure 4 demonstrates the change in the number 
of variables and solution time as a function of time horizon length. 
 

 

Figure 4: The number of variables, and solution times for the UG-PSP tactical and UG-PSP  

Although the UG-PSP strategic formulation results in much smaller instances than the equivalent tactical ones, the 
strategic formulation produces solutions with respect to aggregated time periods, rather than with the fidelity of the 
more detailed and directly implementable schedules from the UG-PSP tactical formulation.  The activities to be 
completed in one aggregated time period in the UG-PSP strategic model may not be feasibly completed with respect 
to the UG-PSP tactical formulation over the same time period; for example, production may be significantly skewed 
towards the beginning or the end of an aggregated time period. 
 
To illustrate how the formulations perform in practice, we apply both the UG-PSP tactical (using daily fidelity) and 
strategic (using 60-day fidelity) formulations to a dataset from a large underground stoping mine that contains over 
25,000 activities and resource constraints that limit development, stope extraction, backfilling, and pollutant 
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emissions.  Setting the optimality gap at 5% (to compensate for the large problem instances), we obtain relative 
solution times that qualitatively closely match those of the synthetic dataset (see Table 3).   
 

Table 3: Solutions times for a real-world underground mining data set with thousands of activities. Note: *indicates that 
CPLEX is unable to find a solution within 5% of optimality in 72 hours. 

Time 
Horizon 
(days) 

UG-PSP Tactical 
Solution Time 

UG-PSP Strategic 
Solution Time 

60 00h 00m 59s 00h 00m 01s 
120 68h 05m 07s 00h 00m 01s 
180 * 00h 00m 06s 
360 * 00h 05m 13s 
720 * 43h 32m 40s 

 

Conclusion: 
 The contribution of this paper lies in our distinction between two formulations for the UG-PSP; while the tactical 
formulation contains more detail, it doesn’t scale well with horizon length.  Therefore, for longer time horizons, we 
recommend our strategic formulation.  We use commercially available software and both small and larger instances 
to demonstrate.  Additional real-world examples appear in Brickey (2015) and King et al. (2015); however, these 
authors use a specialized algorithm (Bienstock and Zuckerberg, 2010) with enhancements (Chicoisne et al., 2012; 
Muñoz et al., 2015) to solve their problem instances. This highlights the fact that the formulations dicussed in this 
paper can be exploited so as to solve instances large enough to be of interest and importance to the mining industry. 
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