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ABSTRACT: Strategic open pit mine planning methodologies have traditionally broken up the 
production scheduling process into two steps. First, push-backs (or phases) are determined. Second, 
bench-phases are scheduled in time by defining which extracted material should be treated as ore, 
and which as waste, and deciding how extracted ore should be processed. Traditionally, this last 
step has been carried out using heuristics. In this article we describe a mixed integer programming 
(MIP) formulation with which this last step can be optimized, and compare it to Whittle’s Milawa 
algorithm. Our results confirm that MIP techniques for this problem have come to the point where 
they can solve real-sized problem instances, computing solutions that are better both in terms of 
objective function and modelling detail.

INTRODUCTION

In the early 1960s, Thys Johnson [7] proposed a mathematical programming model for solving 
the strategic open pit mine planning problem. Solving it has proved computationally daunting, 
however: the economic block models used to describe ore bodies are typically made up of millions 
of blocks, and production schedules usually span decades, resulting in complex problem instances 
having hundreds of millions of variables. Since Johnson’s early work a number of authors have built 
on his model and methodology, with important advances in recent years (See for example, [4, 3, 1, 
2, 5]). Despite this progress, mathematical programming approaches have faced two main difficul-
ties. On the one hand, though the size of problems that have been tackled has greatly increased, 
most approaches still need to simplify Johnson’s model in one way or another. Most consider only 
a single destination per block, or a limited number of constraints. On the other hand, it is not 
clear how the solutions produced by pure mathematical programming approaches can be made 
feasible in practice. This is due to the complex spatial constraints that need to be imposed in order 
ensure minimum width requirements for equipment to move and operate in the mine. Solutions 
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produced by these approaches tend to scatter the extraction of small numbers of blocks throughout 
the deposit, making solutions unrealistic.

In order to circumvent these problems in practice, mine planners have instead relied on an 
approach known as the Nest-Pit method. This is a heuristic technique that greedily breaks down the 
problem into two main steps: First, it determines a set of push-packs (or phases) to be used as guides 
to construct a production schedule. Second, it schedules the blocks in each push-back, bench by 
bench. In this approach, blocks are not extracted individually, but rather, blocks in a same bench-
phase are concurrently extracted. The Nested-Pit method is the natural result of two seminal papers 
from the early 1960s: That of Lerchs and Grossman [10], who proposed a technique for creating 
a sequence of nested pits used to guide the creation of push-backs; and that of Lane [8, 9], who 
proposed a dynamic programming technique for scheduling the timing of the bench-phase extrac-
tion, and the destination of the individual blocks once extracted. To our knowledge, all commercial 
software packages for strategic mine planning use the Nested-Pit method.

In this article we propose a MIP model for dealing with this last step of the Nested-Pit method. 
With the exception of Lane’s algorithm and its variants, which both simplify the problem and are 
not known to be exact optimization algorithms, there is little if any literature on solving this prob-
lem to optimality. In fact, this problem is generally assumed to be intractable. For example, the 
user’s manual of the NPV Scheduler software package warns its readers that “General NPV maximi-
zation problem is intractable for real mines. The methods that solve this problem are applicable to 
academic examples with less than 100,000 blocks and uniform slopes, and even then the computa-
tion time is counted in days.’’ (OES Overview, Maintenance Release 21 (SP 3)). The MIP model 
that we propose is different to others that have been proposed in the literature in that we work with 
a pre-defined set of Push-backs. In addition, this study is the first to compare the results obtained 
by this model with those obtained with a major commercial software package on exactly the same 
instances. Our goal is not only to produce solutions with higher (and provably optimal) values, but 
also, to show that mathematical programming makes it easy to impose additional constraints that 
are important to model for operational reasons. 

NOTATION

Let B represent the set of blocks, and D the destinations to which blocks can be sent. We assume 
destinations can be waste-dumps or processing-locations (mills, leech-pads, etc.), but not stock-
piles. Let T = {1,...,T} represent the time periods. For each b∈B, d∈D, and t∈T, let pt

b,d represent 
the estimated profit obtained by sending b to d in time t. For each b∈B let qb be its tonnage. 

Let P = P1,...,Pn{P1,...,Pn} represent the set of pre-defined push-backs. Assume that these 
pushbacks are disjoint sets of blocks. In practical applications, these pushbacks will typically be 
obtained by taking differences between sets of nested pits computed by a parametric run of the 
Lerchs Grossman algorithm. Assume that benches are numbered from 1 to H, with bench 1 being 
the topmost bench. For each h∈{1,...,H}, let B(h) represent the blocks in bench h. Given p∈{1,...,n} 
and h∈{1,...,H} we say that I = B(h) ∩ Pp is an increment. Let I index all of the increments. For each 
i∈I let hi and pi represent the index of the corresponding bench and push-back, respectively, and let 
qi represent the total tons of increment i.

Let A⊆I×I represent a precedence relationships between increments. A will be used to model 
sequencing requirements by imposing that if (i1,i2)∈A, then increment i2 must be extracted no 
later than increment i1. Define A as follows: If i1 and i2 are non-empty, then (i1,i2) ∈A if either hi1 
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< hi2, or, if hi1 = hi2 and pi1 < pi2. That is, increments must be extracted from top to bottom, and 
then in the order prescribed by the push-backs.

For each t∈T let Mt represent the mining capacity and Ut
d the processing capacity, of destina-

tion d∈D at time t∈T. We assume capacities are expressed in tons.

A MIXED INTEGER PROGRAMMING (MIP) MODEL

Let variables xi,t indicate the proportion of increment i∈I extracted in time t∈T. For each b∈B; 
d∈D and t∈T let variable yb,d,t indicate the proportion of block b sent to destination d in time t. 
In Figure 1 we present a mathematical programming formulation of the production scheduling 
problem, given a pre-defined set of push-backs:

Note that model OPMPS is an extension of a model recently proposed by Bienstock and 
Zuckerberg. In formulation (OPMPS) the objective function (1a) maximizes solution NPV. 

Figure 1. Mathematical programming formulation of the open pit mine production scheduling (OPMPS) 
problem
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Constraints (1b) impose consistency between the x and y variables, ensuring that all blocks in a 
same increment are extracted in the same proportion in all time periods. Constraints (1c) impose 
the total amount extracted of each increment during the considered time horizon does not exceed 
the available material in the increment. Constraints (1d) impose the precedence relationships. 
Constraints (1e) impose upper bounds on the total tonnage that can be extracted per time period. 
Constraints (1f ) impose upper bounds on the total tonnage that can be sent to each destination 
per time period. Constraints (1g) and (1h), and (1i) and (1j), known as volume-flow constraints, 
impose a limit on how much extraction and production can vary from period to period. This con-
straint is parameterized by –1<α,β<1, and D*⊆D. Constraints (1k) impose non-negativity of the 
variables. Constraints (1l) impose the integrality conditions on the x variables. That is, they impose 
that in order for a block to be partially (or totally) extracted, all of its predecessors must be totally 
extracted. If an OPMPS solution only satisfies constraints (1l) on pairs of increments (i1,i2)∈A such 
that hi1≠hi2 we say that the solution is partially-integral. 

COMPUTATIONAL ANALYSIS

In this study we consider six strategic mine planning instances: Marvin, McLaughlin, Chaiten, 
Guallatari, Tacora and Palomo. Two of these instances, Marvin and McLaughlin, can be down-
loaded from the MineLib website [6]. The others are anonymous data sets provided by our industry 
research partners. Statistics pertaining to all instances are described in Table 1. The names of the 
instances provided by our partners, and some basic statistics, have been changed for confidentiality 
reasons. All instances have but two destinations: mill and waste-dump. Our analyses were made 
with Dassault’s Whittle 4.4.0, and with OMP. OMP, which stands for Open Mine Planner, is an 
academic production scheduling software developed by the authors of this article that includes 
a customized mixed integer programming solver for OPMPS. This solver uses the Bienstock-
Zuckerberg algorithm [1,2] to solve linear programming relaxations of OPSP at the root and in 
each node of a branch-and-bound algorithm. This branch-and-bound algorithm is combined with 
the TopoSort heuristic presented in [5].

To create our problem instances we applied the following procedure on each data-set using 
Whittle. We created 36 pitshells with revenue factors ranging from 0.3 to 1.0. For each data set we 
created an operational scenario (Cashflow ore selection method) with four push-backs (automatic 
push-back definition using Milawa NPV and the “fast” calculation mode). 

For each problem instance we produced two production schedules with the Whittle Cut-off 
Optimization tool, starting from our pre-defined push-backs. The first solution was generated with 
the Milawa NPV scheduling algorithm, and the second with Milawa Balanced. In these runs we did 
not use the maximum lead, minimum lead and maximum benches per period constraints. From 

Table 1. Description of the different instances of the test set used in our computational study
Instance Blocks Increments Periods Annual Discount Rate
Marvin 53,271 56 20 0.10
Guallatari 2,000,000 322 60 0.05
Palomo 1,000,000 67 50 0.10
McLaughlin 2,140,342 173 20 0.15
Chaiten 300,000 266 25 0.10
Tacora 4,000,000 233 60 0.10
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our runs we found that Milawa NPV produces feasible OPMPS solutions that ignore volume flow 
constraints (1g)–(1j). It is not exactly clear what Milawa Balanced attempts to do. The reference 
manual simply states that the algorithm attempts to find a solution with “an improved throuput 
balance,’’ which it does by seeking to “maximise the usage of production facilitites early in the life 
of the mine instead of maximising NPV’’. This suggests that it ignores constraints (1g), (1h), (1j), 
and imposes (1i) with α = 0.0 for the processing destination (i.e., not for waste). Our computa-
tional experiments show that that Milawa Balanced produces solutions of OPMPS that are partially 
integral.

For each problem instance we also produced two production schedules with OMP. The first 
solution ignores constraints (1g) and (1h). We called this the OMP NPV solution. Since the user’s 
manual is not precise about what Milawa Balanced does, we opted to be more conservative and 
to impose (1g)–(1j) with α =0, β=1. By setting these parameters in this way we hope to achieve 
solutions that are balanced, as defined by the Whittle User’s Manual. For this we defined D* as the 
singleton set containing only the mine processing destination. This imposes that the tons extracted 
and sent to processing must decreasing over time. We call this the OMP Balanced solution. All 
instances were ran for 72 hours each, and the best solution obtained in that time was recorded. 
All instances of Marvin and McLaughling were solved to optimality within hours. The remaining 
instances did not finish solving in the allotted time. However, the OMP solver obtained good solu-
tions (< 3% of optimality) for all instances except Palomo in less than ten minutes each.

To begin we plot in Figures 2–5 the tonnage graphs corresponding to the solutions obtained 
for the Marvin and Palomo instances. These graphs illustrate the total number of tons sent in each 
problem to each destination (processing plant or waste dump). As can be seen in the graphs, all of 
the NPV solutions have horrible throughput balances. For example, after year 10 both the Milawa 
NPV and OMP NPV solutions find that it is optimal to not saturate the processing plant capacity 
in order to extract more material. Milawa Balanced effectively manages to build solutions that pro-
duce in a non-increasing rate. OMP Balanced solutions, in addition, manage to effectively impose 
a non-increasing extraction rate to the solutions. It is interesting to note that in all of the OMP 
Balanced solutions, the waste extracted in each period is also non-increasing, even though this is 
not explicitly required by the corresponding OPMPS formulation. This is a natural consequence 
of imposing that the total extracted and processed tons are non-increasing, but there could be 
instances where this is not observed. It is also interesting that the OMP solutions tend to span fewer 
years than the corresponding Milawa solutions. Moreover, in the Palomo Data Set it is remarkable 
that the OMP Balanced solution can produce a solution with such higher value, spanning such a 
shorter amount of time and moving so much less material. Moreover, it is surprising how much the 
number of tons extracted varies from year to year in the Whittle Balanced solution. This makes the 
Milawa Balanced solution of this problem very impractical.

The NPV of the solutions obtained using Whittle and OMP are presented in Table 2. The 
solution values are normalized with respect to the best known-upper bound of the solution value. 
This makes it easier to see how close solutions are to optimality, and to make comparisons. In this 
table we also present the ratio of the best-known NPV and Balanced solution values. As can be 
seen, OMP NPV is able to obtain solutions within 3% of optimality in all instances. Milawa NPV 
also does very well, failing only in Guallatari and Palomo, where it finds solution with a gap of 
approximately 15% each. OMP Balanced also manages to obtain high-valued solutions, all within 
6% of optimality. Milawa Balanced again has great difficulty with Guallatari and Palomo. Milawa 
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Balanced was not used to solve McLaughlin because, for some reason unknown to us, the algorithm 
requires an upper bound on the production tonnage, which we did not have for this instance. It 
is interesting to note that in Chaiten, Milawa obtained a Balanced solution with objective func-
tion value higher than that of OMP. It should be noted that this solution is only partially feasible, 
but it is still a very good result. This table highlights the value of using exact optimization to solve 
these instances. Since Whittle does not provide bounds on the quality of its solutions, one might 
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Figure 2. Tonnage graphs for NPV solutions of the Marvin data set
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Figure 3. Tonnage graphs for balanced solutions of the Marvin data set
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Figure 4. Tonnage graphs for NPV solutions of the Palomo data set
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Figure 5. Tonnage graphs for balanced solutions of the Palomo data set
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think that the solutions that Milawa obtains are the best possible. However, not only does OMP 
obtain significantly better balanced solutions, but also, the OMP Balanced/NPV ratio shows that 
it is possible to obtain balanced solutions that achieve nearly the same value as their unbalanced 
counterparts.

A graphical analysis is presented in Figure 6, where we plot the accumulated NPV of the solu-
tions over time. We rescale the Balanced and NPV solutions so that they can compared against each 
other. As can be seen in the graphs, the OMP solutions obtain significantly higher values during the 
first few years of the mining operation than the corresponding Milawa solutions. This makes them 

Table 1. NPV of the solutions obtained

Instance
Whittle Milawa OMP

NPV Balanced Balanced/NPV NPV Balanced Balanced/NPV
Marvin 98.61 91.78 89.95 100.00 99.47 97.38
Guallatari 83.76 63.79 64.74   98.27 96.72 98.15
Palomo 85.60 25.89 25.03   99.24 96.19 93.00
McLaughlin 99.73 — — 100.00 99.98 98.89
Chaiten 97.61 98.99 99.35   99.62 94.22 94.57
Tacora 96.96 93.35 95.69   97.26 94.62 97.00
Geo. Mean 93.48 67.49 67.34   99.06 96.84 96.48

(a) Marvin

(b) Palomo

Figure 6. PV graphs of the Marvin and Palomo data sets
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financially much more attractive. In addition, it can be seen that on a year-by-year basis the OMP 
Balanced solutions are very competitive the Whittle NPV solutions.

The computational analyses in this paper highlight the value, both in terms of objective func-
tion and in modelling detail, that can be achieved by using Mixed Integer Programming approaches 
over traditional heuristics. Though the case studies that we consider are simple, it is not difficult to 
see that OPMPS can be even further enriched by adding additional constraints. Examples might 
be more advanced sequencing rules that impose a maximum number of open phases, or minimum/
maximum lags between benches, blending requirements, use of stockpiles, or yearly production 
targets as defined by the user.
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