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ABSTRACT 

Given a block-model of an open cut mine, a production scheduling policy defines which blocks 

should be extracted, when they should be extracted, and what should be done with them once 

extracted (i.e., sent to a mill, waste-dump, stockpile, etc.). The conventional three-step heuristic 

for constructing such a scheduling is as follows: First, compute an ultimate-pit. Second, 

subdivide the ultimate-pit into phases. Third, schedule the blocks in each bench-phase, taking 

into account the mining, milling and market/refining capacities. Though each of these steps is in 

itself an optimization problem, the three steps, when put together, constitute a piece-meal 

approach to the full problem. Recent developments make it possible to implement a direct 

optimization methodology using integer programming (IP) that can tackle real-sized problems. 

In this article we first compare such a direct approach to a commercial implementation of the 

traditional methodology (Gemcom Whittle) and find that the direct approach yields solutions 

with significantly higher value. In an attempt to explain this difference, we modify the IP 

approach so as to generate solutions more similar to those obtained by the traditional approach. 

We find that this modified approach still outperforms the commercial solver. We conclude that 

the direct approach attains higher value primarily because the commercial solver’s heuristics 

are not effective in the problems considered. In fact, we find that the traditional methodology, if 

executed exactly, yields near-optimal solutions on all our benchmark problems. We do not 

consider blending, stockpiles, or operational spatial constraints (e.g., only “best-case” 

solutions). 
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INTRODUCTION 

Before carrying out an open pit mining operation, analysts must first prepare what is known as a 

strategic mine plan. Given a mining reserve, this consists of a tentative production schedule, 

outlining which part of the reserve will be extracted, when and how it will be extracted, and the 

capital investments that will be required to do so. Such a plan, in practice, serves as a feasibility 

report with which investors can decide whether or not to pursue the mining endeavour, and as 

an approximate life-of-mine plan, detailing the cash flows over time from the moment the 

project is initiated until reconciliation. 

In order to produce a strategic mine plan, analysts must first count with a block model. This is a 

discretized three-dimensional representation of the reserve that is made up of equal sized units 

known as blocks. In a block model, each block has a number of geologic and economic 

attributes, including location, tonnage, mineral grades, hardness, wall-slope requirements, and 

others (Hustrulid and Kuchta, 2006).  

A strategic mine plan, or production schedule, consists in specifying which blocks in the 

reserve will be extracted, and, for those blocks that are to be extracted, the time of extraction 

and the destination (e.g., mill, waste-dump, leech pad, etc.). This is done in such a way as to 

maximize NPV and meet capacity constraints. Capacity constraints are primarily of two types: 

mining constraints and processing constraints. Mining constraints impose a limit on the total 

tonnage of blocks that can be extracted from the reserve in a time period. Processing constraints 

impose a limit on the total tonnage of blocks that can be sent to each destination in a time 

period.    

The traditional mine planning methodology 

There are many different ways in which a production schedule can be produced. We begin by 

introducing some notation, and then describe the key steps of the traditional methodology.  

Consider a mining reserve with blocks   and destinations   (e.g., mill, leech pad, waste-dump, 

etc.). Let value     represent the net profit obtained from sending a block b     to destination 

d   . These values are calculated on the assumption that each block b “HAS been uncovered 

and that it WILL be mined” (Whittle, 1990). That is, these profits do not consider any fixed 

mining costs or variable costs associated to other blocks and are independent of the order in 

which blocks are mined and processed. Let   represent the set of all block-pairs       such 

that block a must be extracted before b in order to comply with pit-slope requirements. For each 

block b    , let    be its tonnage. For each time period t let    be the mining capacity (in 

tons) and let   
  be the processing capacity for destination d (tons).    

The three main steps of the traditional mine planning are: 

1. Computing an ultimate pit or final contour. In this step the region of the reserve where the 

mining operations are to ensue is limited to a set of blocks P satisfying the required wall-slope 

requirements (i.e., a pit). Let u be any vector in   . Define problem: 
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UPL(u :   

   ∑    

   

                          

   {   }      

 

The ultimate pit limit or final contour delimits the sub-region of the mine in which extraction 

will take place. It is determined by solving UPL(p), where vector p is defined so that   = 

max{     d   } for each     . In problem UPL(p), variable    takes value one if and only 

if block b is included in the ultimate pit limit. That is, the ultimate pit limit, or final contour, is 

defined as the set of all blocks in set   {            }  This problem can be solved using 

the algorithm of Lerchs and Grossman (1965), though recent evidence suggests the Pseudoflow 

algorithm can be significantly faster (Hochbaum and Chen, 2000; Chandran and Hochbaum 

2009).  

2. Sequencing. In this step the blocks in the ultimate pit are subdivided into a sorted family of 

sets            (typically called phases) that prescribe an order of block extraction. The 

intuition is that the blocks in    are the most immediately profitable, and should be extracted 

first; blocks in    second, and so on. To compute phases it is customary to define a set of 

vectors              such that                    , where p is the block value vector 

used to compute the ultimate pit limit, and where the inequalities are defined component-wise 

(i.e.,   
      

    for all i and b). For each vector   , let    represent the optimal solution of 

UPL(   , and let    {          
   }  It is well known that the sets    will be nested 

(Lerchs and Grossman, 1965). That is,            Using these nested pits, the phases are 

defined using these pits, as        and             , where         for i> 1. 

3. Production Scheduling. In this step each block in the ultimate pit is assigned a time of 

extraction and a destination (e.g., mill, waste-dump, leach pad, etc.). Rather than scheduling 

blocks individually, blocks are scheduled in sets corresponding to the intersections of phases 

and benches. Formally, for each j, let      represent the set of all blocks in bench j of the 

reserve (numbered from top to bottom), and consider a set of ordered phases           . For 

each phase     let   
     ⋂         If a set   

  is non-empty, it is called an increment or a bench-

phase. Increments are scheduled for extraction in such a way that if two increments are in a 

same phase, then the one on top is scheduled first for extraction, and if they are in different 

phases, the one in the lowest-indexed phase is scheduled first. Formally, let   
{       } represent the set of all increments defined from a set of phases, sorted in extraction 

order. If    =   
  and    =   

  correspond to two distinct increments, then u < v if and only if i<k , 

or, if i = k and j < l. See Figure 1 for a depiction of phases and increments in a hypothetical 

two-dimensional mine. 
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Figure 1 – Three phases (left) and its corresponding increments (right) of a two-dimensional mine with 5 

benches. 

Given a fixed set of increments corresponding to an open pit mine, it is possible to define many 

different production schedules. This is because there are many different ways of assigning 

destinations to the blocks in each increment. One way of obtaining a production schedule is by 

using Kenneth Lane’s well-known “cut-off grade optimization” algorithm (Lane, 1988). This is 

an iterative dynamic programming algorithm that, under the assumptions that there is a single 

increment, and that there are only two destinations, guarantees to find an optimal production 

schedule. We are not aware of any study showing that this algorithm can be extended to 

multiple increments and destinations in an optimal manner. Presumably because of this, 

important mine planning software packages include unknown and proprietary heuristics (see for 

example, Whittle and Wharton, 1995). 

Three remarks concerning the traditional mine planning methodology 

First, the sequencing method described above is likely to produce phases with undesirable 

shapes and sizes. This problem can sometimes be overcome by changing the way vectors 

             are determined, or by modifying the resulting phases with a post-processing 

algorithm (Wharton, 1997; Khalokakaie, 1999). For example, Gemcom Whittle provides an 

algorithm known as “Width” for this purpose. Unfortunately, it is known that these techniques 

can significantly decrease the objective function value of the final solution (Wharton, 1997). 

Because of this, the solution obtained by Steps 1 through 3 choosing       and         
    for i> 1 is typically referred to as a “best-case” solution, and is most often used as an upper-

bound solution that is later modified to obtain a feasible one.  

Second, the requirement that increments should be scheduled for extraction in sequential order 

(by phase and then by bench) is not strict. For example, Gemcom Whittle’s Milawa algorithm 

(Wharton, 2000), allows different phases to be simultaneously worked on. Though in practice 

this tends to decrease the objective function value of a solution, it is helpful to meet different 

types of operational constraints. 

Third, it is not clear how to extend the methodology described above so as to incorporate 

blending requirements, stockpiles, multi-mine projects, and other modelling issues. Different 

software vendors have adopted different approaches.  
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A direct optimization (integer programming) methodology 

To our knowledge, the first effort to formulate a mathematical programming model for solving 

the strategic open-pit mine planning problem dates back to the work of Johnson (1968). An 

integer-programming version of the problem described in the introduction can be formulated as 

follows (Bienstock and Zuckerberg, 2010): 

 

In this formulation variable xb,t is one if and only if block b is extracted in time period t, and 

variable yb,d,t is one if and only if block b is extracted and sent to destination d in time period t. 

The objective function (1) consists in maximizing profits, constraints (2) impose that each block 

should be sent to exactly one destination if it’s extracted, constraints (3  impose the precedence 

relationships between blocks, constraints (4) impose the mining capacity constraint for each 

time period, constraints (5) impose the processing capacity constraints for each period and each 

destination, and constraints (6) impose integrality of the solution. We henceforth refer to this 

formulation as DIRECT-IP. Note that DIRECT-IP solves a problem that is slightly different 

than that solved by the traditional methodology, in that DIRECT-IP does not allow a fraction of 

a block to be extracted in a time period. 

Like the traditional strategic open-pit mine planning methodology, DIRECT-IP suffers from 

some important limitations. First, its difficulty greatly increases with the size of the instance.  

Second, as in the case of the “best-possible” solution in the traditional approach, the solution of 

DIRECT-IP can be very fragmented, resulting in a schedule that is very difficult to implement 

in practice. DIRECT-IP does, however, have important advantages: First, it has the potential to 

yield significantly better solutions than the traditional approach. Second, it is easier to extend to 

more complex modelling requirements such as blending-requirements, multi-mine systems, and 

stockpile management.  

METHODOLOGY AND RESULTS 

Comparing the traditional methodology to the direct optimization 

methodology 

For the purpose of this study we will ignore operational / spatial constraints (shape, size and 

fragmentation of extracted regions over time), and compare the direct approach to the 

traditional approach only in terms of net-present-value of the solution obtained. 
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Our comparison comprises five different instances block models. Three of them are publicly 

available in the MineLib website (http://mansci.uai.cl/minelib, Espinoza et al 2012): these are 

the McLaughlin, Marvin and W23 instances. The other two are Anonymous1 and Anonymous2. 

Information summarizing each of these instances is presented in Table 1. In all of these 

instances we ignore blending and stockpiling constraints if they exist. 

Table 1 – Description of test block models. 

Name Number of 

Blocks 

Number of 

Destinations 

Number of 

Minerals 

Discount Rate 

per Time 

Period 

Marvin 8516 2 2 10% 

W23 62300 4 1 10% 

McLaughlin 180749 2 1 15% 

Anonymous1 106409 2 1 10% 

Anonymous2 129700 3 2 5% 

 

 

We solve each instance twice; once with the Gemcom Whittle Nested Pit (GWNP) optimizer 

(traditional approach) and once with the DIRECT-IP integer programming formulation (direct 

optimization approach).  

 Method 1: GWNP Optimizer. We solve the instance using the traditional approach as 

implemented by Gemcom Whittle version 4.2, a market leader in this class of software. We 

select the destination of each block using the “cash flow” method and we compute the pit 

shells for different revenue factors. We select the pit with revenue factor 1.0, and we 

schedule this pit using GWNP’s “best case”. Finally, we execute the cut-off optimization 

module in order to redefine the cut-off of each period, maximizing the discounted cash flow 

of the project.  

 Method 2: DIRECT-IP. We begin by formulating the DIRECT-IP integer programming 

formulation, as described in the Introduction. We proceed by solving the Linear 

Programming relaxation of this formulation using the Bienstock-Zuckerberg (2010) 

lagrangian algorithm. In order to obtain an integer programming solution we use the 

TopoSort heuristics and Sliding Time Window heuristics described in Chicoisne et al 

(2012) and Munoz (2012).  

The results of our experiment are summarized in Table 2. As can be seen from the “DIRECT-IP 

Improvement Over GWNP” column, DIRECT-IP outperforms GWNP in all the instances. In 

Marvin, the improvement is minimal (just 1.22%). However, in W23 and Anonymous2 the 

improvement is significant (over 12% . As can be seen from the “DIRECT-IP Optimality Gap” 
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column, the values obtained by DIRECT-IP are not always optimal, but in general, they are 

very good. For example, in McLaughlin we know that the solution obtained by the DIRECT-IP 

method is within 0.28% of optimality, whereas for W23, the solution is only within 3.38%. In 

both of these cases there could exist a solution with higher objective function value than the one 

we found. If this were the case, it would indicate that value reported in the “Improvement of 

DIRECT-IP Over GWNP” column is an under-estimate of the improvement that can be 

obtained from direct optimization. 

Table 2 – Computational results comparing DIRECT-IP and GWNP. For each instance, the value of 

“Improvement of DIRECT-IP Over GWNP” indicates the percentage improvement of the objective 

function of DIRECT-IP relative to GWNP. The “DIRECT-IP Optimality Gap” value indicates the integer 

programming optimality gap of the DIRECT-IP solution.   

Instance 

Improvement of 

DIRECT-IP 

Over  

GWNP 

DIRECT-IP 

Optimality Gap 

Marvin 1.22% 2.15% 

W23 12.77% 3.38% 

McLaughlin 5.91% 0.28% 

Anonymous1 5.67% 0.75% 

Anonymous2 12.06% 1.11% 

Average 7.53% 1.53% 

 

 

Analysis of the DIRECT-IP and GWNP solutions 

Why does DIRECT-IP outperform GWNP? From the experiment just described this is not quite 

clear, and several possibilities arise. On the one hand it could mean that GWNP is a non-

optimal implementation of the traditional method, in the sense that one of the three steps of the 

heuristic is not optimally carried out. On the other hand, it could be the case that GWNP is an 

optimal implementation of the traditional method, but yet, that the traditional method is limited 

by its three-step peace-meal approach to optimization. In this latter case, it could be that forcing 

the solution to extract blocks in the sequential order indicated by the phases leads to poor 

solutions. It might also be that forcing the solution to extract blocks in the order prescribed by 

the increments leads to the losses in value. 

Is it fair to compare DIRECT-IP and GWNP in terms of the obtained objective function value? 

It might argued that it is indeed unfair, because GWNP produces very structured solutions that 
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extract blocks by increments, whereas DIRECT-IP is allowed to generate much more scattered 

solutions where blocks are selected from all over the mine in a same time period. Consider, for 

example, a user interested in producing solutions that are more operationally tractable (i.e. 

better spatial properties). Such a user might get lucky, and find that the increments defined by 

the GWNP sequencing step have nice shapes. In this case, GWNP will likely produce more 

operationally practical solutions than those produced by DIRECT-IP. On the other hand, if the 

increments do not have desirable shapes, the user could use the Gemcom Whittle Width 

algorithm to obtain a new set of “nicer” increments, and then proceed to use the GWNP 

algorithm as before. It is not clear what option a DIRECT-IP user might have to produce 

solutions with more desirable shapes. 

We now look to address these two concerns. On the one hand, we try to identify the reason that 

DIRECT-IP outperforms GWNP. On the other hand, we show how to adapt DIRECT-IP so as 

to generate solutions that are more comparable to those obtained by GWNP.  

For this analysis we introduce two variants of the DIRECT-IP method. The first of these 

methods, which we call DIRECT-IP-Increments, adds constraints to the DIRECT-IP 

formulation so as to enforce that blocks are extracted in the order prescribed by the GWNP 

increments. The second method, which we call DIRECT-IP-Phases, adds constraint to the 

DIRECT-IP formulation so as to enforce that blocks are extracted in the order prescribed by the 

GWNP phases. The idea is that DIRECT-IP-Increments is a variant of the traditional approach 

where the production-scheduling step of the traditional three-step heuristic is done with integer 

programming.  By comparing the DIRECT-IP-Increments solution to the GWNP solution we 

can assess how well GWNP is doing the production scheduling. DIRECT-IP-Phases is a variant 

of the traditional approach where the production-scheduling step of the traditional three-step 

heuristic is done with integer programming, but where it is not required that blocks be extracted 

in the order prescribed by the increments. By comparing the DIRECT-IP-Phases solution to the 

DIRECT-IP-Increments solution we can assess the cost that is incurred in the traditional 

approach by enforcing that phases should be extracted bench-by-bench. We now describe these 

methods in more detail: 

 Method 3:  DIRECT-IP-Increments. We solve a modified version of the instance as 

follows. We export the increments computed by GWNP, and we solve a modified version 

of DIRECT-IP in which the increments must be extracted in the order specified by the 

GWNP solution. That is, no block in increment I(i) can be extracted until all of the blocks 

in I(i-1) have been extracted. To achieve this, we add dummy blocks in between increments 

in order to impose the additional precedence constraints between blocks, just as we did in 

the DIRECT-IP-Phases approach. This method starts from the solution obtained by GWNP. 

 Method 4: DIRECT-IP-Phases. We solve a modified version of the DIRECT-IP instance as 

follows. We export the pit shells computed by GWNP, and we solve a modified version of 

DIRECT-IP in which the pits must be extracted in the order specified by these pit shells. 

That is, no block in pit S(i) can be extracted until all of the blocks in S(i-1) have been 

extracted. To achieve this, we add dummy blocks in between the different pits in order to 

impose the additional precedence constraints between blocks. See Figure 2 for an 

illustration depicting the use of a dummy block to impose the sequencing constraint. After 

adding the dummy block we obtain a new instance of DIRECT-IP that can be solved with 

the same method we used for Method 2. This method starts from the solution obtained by 

DIRECT-IP-Increments. 
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Figure 2 – Dummy blocks and its corresponding precedence constraints between blocks inside each 

phase, in order to impose the sequencing constraint. 

The computational results obtained from solving the production scheduling problems with the 

new methodologies are described in Table 3. 

Table 3 – Computational results comparing DIRECT-IP, DIRECT-IP-Phases, DIRECT-IP-Increments and 

GWNP. For each instance, the value of “DIRECT-IP Improvement Over GWNP” indicates the percentage 

improvement of the objective function of DIRECT-IP relative to GWNP. The values of the last two 

columns are analogous. 

Instance 

Improvement of 

DIRECT-IP 

Over 

DIRECT-IP-

Improvement of 

DIRECT-IP-Phases 

Over 

DIRECT-IP-

Improvement of 

DIRECT-IP-

Increments 

Over 
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Increments Increments GWNP 

Marvin 1.22% 1.22% 0% 

W23 5.32% 2.59% 7.07% 

McLaughlin 5.91% 5.38% 0% 

Anonymous1 4.86% 4.05% 0.77% 

Anonymous2 1.69% 0.63% 10.20% 

Average 3.80% 2.77% 3.61% 

 

DISCUSSION AND CONCLUSIONS 

As can be observed from Table 3: 

 GWNP is not optimally solving the production-scheduling step of the traditional 

algorithm. In fact, in W23 and Anonymous2 there is a significant improvement 

obtained by DIRECT-IP-Increments over GWNP (7.07% and 10.20%, respectively). 

This might be explained by the fact that W23 and Anonymous2 are the only two data 

sets that consider more than two destinations.  

 The cost of extracting phases bench-by-bench is negligible. This can be observed from 

the fact that the improvement of DIRECT-IP-Phases over DIRECT-IP-Increments is 

always below 5%.  

 The traditional approach, when applied exactly, is surprisingly good, and achieves 

objective function values very near to those of the direct optimization approach. In 

fact, the improvement of DIRECT-IP over DIRECT-IP-Increments is always below 

6%, and in average, is 3.8%. This is probably explained by the fact that the 

improvement afforded by DIRECT-IP over DIRECT-IP-Phases is very little, 

indicating that the practice of extracting blocks in the ordering indicated by the nested-

pits (or phases) yields solutions of high value. In fact, for all instances except W23, the 

improvement of DIRECT-IP over DIRECT-IP-Phases is less than 1%. 

 By modifying DIRECT-IP and solving the DIRECT-IP-Increments variant of the 

problem, it is possible to optimally solve the production-scheduling step of the 

traditional approach. This means that DIRECT-IP-Increments could easily be 

integrated into existing traditional software packages as an alternative algorithm to 

those currently employed. This has the advantage over simply using DIRECT-IP that 

the solutions that come out are more likely to have desirable shapes. 

It should be noted that all five of the instances that we consider do not involve complicating 

issues such as blending and stockpiling. It is not clear how blending and stockpiling will change 

the results of our analysis. We expect that incorporating such constraints into DIRECT-IP 

should not be difficult, so we expect to conduct this experiment in the near future. It should also 

be noted that this entire analysis is not taking much into consideration important spatial 
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constraints that ensure that the solutions obtained can be used in practice. This is a very 

important issue that should be considered in the future.  
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