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ABSTRACT 

In order to carry out an open pit mining operation, planners must periodically prepare what is 

known as strategic mine plan. This is a tentative production schedule for the remaining life of 

the mine that defines which area of a mining reserve will be extracted, in what years this 

extraction will take place, which resources will be used for the extraction, and how the 

extracted material will be treated or processed. Given a discretized representation of the mining 

reserve, the problem of actually computing such a production schedule is known as the Open 

Pit Mine Production Scheduling Problem (OPM-PSP). 

OPM-PSP is widely acknowledged to be one of the most critical parts of a mine planning effort: 

Not only is it instrumental for investors looking to understand the expected cash flows of a 

project, but also, strategic decisions resulting from solving OPM-PSP can have binding 

consequences in the life of a mining project. 

An important limitation of traditional methodologies for solving OPM-PSP is that they fail to 

explicitly address the volatility of metal prices. In fact, these approaches typically assume a 

long-term fixed price for each metal, when in truth future prices are unknown. 

Though it is known that mine planning solutions are very sensitive to price volatility, we are not 

aware of any attempt to quantify this sensitivity, nor that try to deal with it.  

In this study, a mean-reverting stochastic process for modeling ore-price uncertainty is 

proposed. This model allows to analyze the sensitivity of mine planning solutions obtained by 

traditional mine planning optimization methods. Computational results confirm that solutions 

are extremely sensitive, and quantify the extent to which small price perturbations can result in 

tremendous losses of profits. 

Secondly, this paper pursues to determine if mine planning optimization methods can be 

modified (by explicitly taking into account price volatility) in order to produce solutions that 
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are less sensitive. To this end, a robust optimization method is implemented and the solutions 

obtained are compared to those obtained by the traditional methods. 

Computational results suggest that there do not exist robust solutions that afford much 

protection against price volatility, thus raising the question: How should price volatility be dealt 

with in practice?  
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INTRODUCTION 

Open pit mines are typically represented by a three-dimensional discretization of the ore-body 

made up of equal sized units known as blocks. In such a block model, geological attributes such 

as tonnage, grade, rock hardness, location etc. are assigned to individual blocks (Hustrulid and 

Kuchta, 2006).  

Given a set of pre-determined resources available for mining it is possible to define for each 

block one or several destinations or treatment options, including sending the block to a waste-

dump, mill, leech-pad, stockpile or other destination. For each block it is possible to estimate 

the cost of sending it to any given destination, as well as the corresponding amount of recovered 

metals.  

Given a block model, the Open Pit Mine Production Scheduling Problem (OPM-PSP) formally 

consists in deciding which blocks should be extracted, when they should be extracted and what 

should be done with them (e.g., send to waste dump, processing plant, stock piles etc.) in such a 

way as to maximize profits with the available resources, and comply with operational 

constraints.  

The first known formal model for describing this problem dates back to Johnson (1968), who 

proposes an integer-programming formulation and describes a decomposition method for 

solving it. Since then a number of methodologies have been proposed for solving Johnson’s 

model. Among others, these include the works of Dagdelen and Johnson (1986), Boland et al 

(2009), Bienstock and Zuckerberg (2010) and Chicoisne et al (2012). 

An important limitation of traditional methodologies for solving OPM-PSP is that they fail to 

explicitly address the volatility of metal prices. In fact, these approaches typically assume a 

long-term fixed price for each metal, when in truth future prices are unknown. 

There is very little work on addressing price uncertainty in open-pit mine production scheduling 

problems. Recent work includes that of Abdel and Dimitrakopolous (2011). A closely related 

problem that has been more commonly addressed is that of geologic uncertainty. For a 

background on this topic see Dimitrakopolous (2011) and Vielma et al (2009). One desired 

framework to deal with uncertainty in the ore prices is robust optimization. Kumral (2010) 

presents a robust optimization model to deal with uncertainty in prices. However, this approach 

is limited by the size of the block model, and can only deal with a small number of prices’ 

scenarios. 

This paper introduces a robust framework for open-pit production scheduling. Using this 

framework two publicly available mine planning problems are analyzed. This analysis shows 

that the proposed approach can be used to quantitatively measure the sensitivity of solutions to 

price volatility. In fact, the analysis shows that for both problem instances, the optimal value is 

extremely sensitive to small price perturbations. What is more alarming is that the analysis 

shows that there do not exist solutions that are significantly more robust. That is, it is not 

possible to modify the solution so that small price fluctuations have such an adverse effect on 

objective function value. 
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METHODOLOGY 

A deterministic model for the open pit mine production-scheduling 

problem 

This section describes an integer programming formulation of the open pit mine production-

scheduling problem. It starts by describing the data and parameters, and follow-up with the 

actual formulation. 

Sets: 

B the set of all blocks. 

A  the set of all precedence relationships: (a,b) is in A if block a must be extracted no 

later than block b.  

D  the set of destinations to which a block could be sent (dump, mill, leech plant etc.). 

M  the set of minerals in the ore-body that could be processed.  

T = {1,...,tmax} the set of time periods under consideration.   

Constants: 

cb,d,t  the discounted cost of sending block b to destination d in time t. 

qb,d,m,t  the amount of mineral m recovered by sending block b to destination d in time t. 

pm,t  the discounted price of mineral m in time t. 

U , u a matrix and a vector with the same number of rows. This matrix includes additional 

constraints on the processed blocks. 

Variables:  

xb,t  binary variable indicating whether block b should be extracted in time t. 

yb,d,t  binary variable indicating whether block b should be sent to destination d in time t. 

zm,t  continuous variable indicating the amount of mineral m recovered in time t. 

Definition. Given the sets, constants and variables described above, the Open Pit Mine 

Production Scheduling Problem (OPM-PSP) is the following linear program: 

 

(       )                      
         

(     )   
 

where, 
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Note that in this formulation, (1) imposes that each block should be sent to exactly one 

destination, (2) defines the z variables, (3) imposes the precedence relationship between blocks, 

(4) represents all other operational constraints that can be modeled using the y variables 

(typically mineral-processing constraints, mine-extraction constraints, blending constraints 

etc.), and (5) imposes integrality of the x,y variables. 

OPM-PSP is equivalent to the PCPSP formulation of Bienstock and Zuckerberg (2010), except 

for the fact additional variables zm,t are introduced, which model the amount of mineral m 

recovered in time period t. As described later, this difference is important in modeling mineral 

price uncertainty. 

A probabilistic model of price uncertainty 

In OPM-PSP it is assumed that the price of a mineral commodity m in time period t is known 

and has value   
 . That is, for each mineral commodity m it is assumed to know a discrete-time 

deterministic time series  

   (  
    

          
  ), 

describing the evolution of the price of mineral m over time. A much better model would 

assume    to be random. In order to revise model OPM-PSP and explicitly incorporate price 

uncertainty it is first necessary to adopt an adequate probabilistic model for the description of 

  . Such a model should be sufficiently complex to reasonably capture the stochastic nature of 

commodity prices, and yet be sufficiently simple to be tractable for an optimization model. 

Such a model is described in this section. Since the same model is applied to all minerals, the 

index m is dropped in the rest of this section.  

First consider a continuous stochastic variable p(t) representing the price of a mineral in time t. 

A very common assumption used when modeling stochastic processes of the price of 

commodities such as copper, gold and other natural resources, is that p(t) follows an Arithmetic 

Ornstein-Uhlenbeck process (Dixit and Pindyck, 1994). This process is described by the 

stochastic differential equation (6) (Oksendal, 2010), 

     ( ̅   )         (6) 
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where   and  ̅ are non-negative scalars corresponding to the speed of reversion and the mean of 

the process, respectively, and where     corresponds to the standard-deviation of the white-

noise. What this equation essentially describes is a stochastic process p(t) that can fluctuate in 

the short term, but that in the long term will be drawn back towards the mean projected value  ̅. 

A discrete-time version of process p(t) is an AR(1) process described by the following first-

order auto-regressive process (Dixit and Pindyck, 1994), and it’s given in equation (7): 

    ̅(   
  )                        (7) 

where the terms    correspond to independently and normally distributed random variables with 

mean zero and standard deviation  

  √
   

 

  
(      )  

 

The vector  

  (             ), 

corresponding to the solution of recursion (7), is a natural discrete-time stochastic time series 

model of the price of minerals. In fact, it can be seen from (7) that in each time period t, the 

value    is obtained from      by shifting it towards  ̅, and introducing some random “white 

noise” (represented by    ). Not only is (7) the natural discretization of the continuous Ornstein-

Uhlenbeck process, but also it is quite tractable. By substituting out the value of      in 

recursion (7) it is not difficult to show that 

    ̅ (    
  )(∑     )   

            ∑         
   
   . 

Note that mineral prices    are constructed as a linear function of normally distributed random 

variables   . Hence, each random variable    follows a normal distribution with mean 

 (  )    ̅   
   (     ̅), 

and a covariance between prices in two periods s and t given by 

   (     )    
         

       

      
. 

It follows that it is reasonable to model vector   , for each mineral m, as a multivariate normal 

distribution. Moreover, if parameters     ̅   and   
  associated to the underlying continuous 

Ornstein-Uhlenbeck process can be estimated, then it is possible to explicitly compute the 

expected value of   , henceforth     (  ), and the covariance matrix, henceforth   . 

Note that in this analysis the discount factor has been omitted. If this discount is applied, then 

  
  

 

(   ) 
 (  

 ) and    
  

 

(   )   
   (     ), where   is the discount factor. 
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For a more thorough background on modeling commodity ore prices with an arithmetic 

Ornstein-Uhlenbeck process, see Dixit and Pindyck (1994). 

For each mineral m consider a stochastic discrete-time series vector    representing the price 

of m over time.  For each value   > 0, consider an ellipsoid   
    centered in     defined as 

follows: 

  
  *                 ‖ ‖   +  

 

where    is the square-root of matrix   . Observe that these ellipsoids are nested in the sense 

that if       , then   
      

  . Thus, for any given     it is possible to determine   such 

that Prob(       
 )    . In fact, this can be achieved by defining   √     

  ( ), where 

  
  ( ) represents the inverse cumulative distribution function of the Chi-squared distribution 

with n degrees of freedom. 

Case study: Analyzing the impact of price uncertainty on two problems. 

In order to evaluate the impact of price uncertainty on a mine planning solution, two publicly 

available instances (Espinoza et al, 2012) of OMP-PSP (Marvin and McLaughlin_limit) are 

studied. Basic information describing each of these instances is presented in Table 1.  

 

Each of these two instances has a deterministic price time series       
  associated to each 

corresponding metal. In order to conduct this study it is assumed that these prices are, instead, 

stochastic variables   , following a multivariate normal distribution with mean  (  )    

      
   It is assumed that this distribution corresponds to an Ornstein-Uhlenbeck process 

with reversion speed      , and with standard deviation of the white noise equal to   
     . These parameters produce a standard deviation of ore price after 20 years of 

approximately a 5% of the expected ore price. Figure 1 illustrates 100 samples of price time 

series using the multivariate normal distribution resulting from the described parameters for the 

McLaughlin_limit instance.  

Table 1 - Mine instances.  Further details in Minelib website (http://mansci.uai.cl/minelib). 

Mine Name Mineral # Blocks Max # Periods Metal prices 

Marvin Au, Cu 53,271 20 years 12 $/gr, 2000 $/ton 

McLaughlin_limit Au 112,687 30 years 900 $/oz 
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Figure 1 - 100 price time-series sampled for the McLaughlin_limit metal data sets. The time-

series in dark-black are in the ε =1% ellipsoid. 

To evaluate the impact of uncertainty, note that given a fixed set of vectors   , for all   > 0, it 

can be computed the following conservative measure (see Ben-Tal and Nemirovski, 2001): 

   
       

    
∑  

 

   ∑   

   

    ∑‖    ‖ 
   

 

That is, given a solution (x,y,z) of OPM-PSP, and given an ellipsoid   
 , this problem compute 

the worst-possible price        
  , in the sense that    achieves the worst-possible objective 

function value of all prices in   
  for (x,y,z). 

Next, define    √     
  (  ), for i = 1,2,3, where                and       .  

Table 2 compare the objective function value of the optimal solution considering that the price 

of each metal    is deterministic and equal to    
 , to the objective function obtained assuming 

that    is the worst-possible price in   
   for i = 1,2,3.  This can be interpreted as follows: What 

is the worst that can happen if the price    is different than    
  by a little-bit (low level of 

uncertainty;   = 0.01), by a medium amount (medium level of uncertainty;   = 0.5) and a high 

amount (high level of uncertainty;   = 0.9)? Results are presented relative to the average case. 

That is, relative to the solution obtained by solving the deterministic problem, and evaluating 

the objective function value in the mean price. 

Table 2 – NPV value of the optimal mine plan, relative to the value of the deterministic case, in 

different worst-case scenarios. 

Instances Average case 
Uncertainty 

Low  Medium High 
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(      ) (     ) (     ) 

Marvin 1.000 0.823 0.730 0.673 

McLaughlin_limit 1.000 0.913 0.878 0.857 

 

What Table 2 shows is that solutions are very sensitive to metal price fluctuations, and that the 

worst that can happen is pretty bad. In fact, it can be seen that even under low uncertainty, the 

NPV drops by 17.7% and 8.7% for Marvin and McLaughlin_limit, respectively. Under high 

uncertainty these values can drop even more, by 32.7% and 14.3% respectively.  

The high sensitivity is, in great part, due to the fact that margins are very tight. That is, the 

objective function is of the form pz-cy (income minus costs), and the values of cy and pz are 

not so different from each other.  

A robust model for the open pit mine production-scheduling problem 

In order to analyze how much room there is to deal with the difficulties presented in the 

previous section, the robust counterpart of the problems in question can be solved. That is, 

instead of maximizing the profits obtained by using an expected price, it is maximized the 

worst-possible profits that could be obtained if all prices in an uncertainty set are considered. 

This can be defined formally as follows.  

Definition. Given an instance of OPM-PSP, and sets   
  as defined above, the Robust Open Pit 

Mine Production Scheduling Problem (R-OPM-PSP) consists in solving: 

(R-OPM-PSP):  
     (     )

(     )   
 

where 

  (     )  
      ∑  

 

  

       
        

 

 

In other words, given a schedule (     ), the problem look for the worst price scenario inside 

the ellipsoid   
  for that schedule. It is easy to see that, if    , then R-OPM-PSP = OPM-

PSP. On the other-hand, for    , the optimal value  ̅ and the optimal solution ( ̅  ̅  )̅ of R-

OPM-PSP will be robust in the sense of Ben-Tal and Nemirovski (2001). Intuitively, this means 

that the objective function value of R-OPM-PSP is protected against perturbations of the 

mineral prices    provided that these prices remain within its ellipsoid   
 .  

Lemma 2. Problem R-OPM-PSP is equivalent to the following Second Order Cone program: 
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        ∑      

       
      ‖    ‖

(     )   

                   for all m in M      (8) 

 

Proof. See Ben-Tal and Nemirovski (2001). 

The Robust Bienstock-Zuckerberg algorithm 

Solving R-OPM-PSP may become difficult in practice. In fact, even solving OPM-PSP can be 

difficult, since practical instances of OPM-PSP tend to be very large in terms of the number of 

variables and constraints. A typical instance can easily be defined from millions of blocks, up to 

fifty time periods, multiple possible destinations for each block, and two or three side-

constraints per time period (Bienstock and Zuckerberg 2010; Chicoisne et al, 2012). A number 

of decomposition algorithms have been proposed over the years for solving such instances of 

OPM-PSP. These range from Dantzig-Wolf decomposition methods (Johnson, 1968), 

Lagrangian Relaxation methods (Dagdelen and Johnson, 1986), specialized methods for a fixed 

number of destinations or side-constraints (Boland et al 2009, Chicoisne et al, 2012), and 

general-purpose methods such as the Bienstock-Zuckerberg decomposition (Bienstock and 

Zuckerberg, 2010). All of these methods have been shown to work reasonably well on real 

instances of OPM-PSP. In the authors’ experience, the best performing methodology to date is 

that of Bienstock and Zuckerberg (2010). 

A recent and interesting development is that of Muñoz (2012), who shows that it is possible to 

directly generalize the decomposition method of Bienstock and Zuckerberg (2010) so that it can 

solve instances of R-OPM-PSP. For this, Muñoz considers the following definition, and proves 

the following two lemmas.  

 

Definition. Given a directed graph G = (N,A) with n vertices, and a second-order conic system 

of inequalities      , with m rows on n variables, the General Second Order Conic 

Precedence Constrained Problem (GCPCP) is the following second order conic programming 

program: 

 

(GCPCP)                   

       
      

           (   )   

              

 

 

Lemma 3. The continuous relaxation of any instance of ROPM-PSP can be reduced to an 

equivalent instance of GCPCP with the same number of variables and constraints. 
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Lemma 4. Problem GCPCP can be solved with the Lagrangian algorithm of Bienstock and 

Zuckerberg (2010) in a finite number of iterations. 

Proof (Lemmas 2 and 3). See Muñoz (2012). 

Thus, the Lagrangian algorithm of Bienstock and Zuckerberg may be used to solve the 

continuous relaxation of R-OPM-PSP. To obtain a feasible integer solution from a fractional 

solution of the continuous relaxation, Muñoz (2012) shows in a number of instances that the 

TopoSort and local-improvement heuristics described in Chicoisne et al (2012) work very well. 

RESULTS & DISCUSSION 

The implementation was developed in the C programming language using CPLEX v12.4. All 

runs were done in a cluster made up of 10 servers, running in CentOS Linux v5.5, each with 16 

GB of RAM. Each run took around 15 minutes. 

Each instance is solved three times, using R-OPM-PSP formulation with the low, medium and 

high uncertainty sets. Table 3 presents two objective function values for each of the solutions 

obtained. The “Average” objective function value is computed using the mean prices (i.e. 

evaluated with the fixed metal price of Table 1), and the “Worst” objective function value is the 

actual objective function of the R-OPM-PSP instance. All results are presented relative to the 

optimal solutions presented in Table 1, which are referred as the nominal solutions.  

Table 3 – Normalized NPV of the robust solution in the average case and in the worst case 

under different levels of uncertainty. 

Instances 

Uncertainty 

Low Medium High 

Average Worst Average Worst Average Worst 

Marvin 0.996 0.826 0.989 0.737 0.979 0.684 

McLaughlin_limit 0.998 0.915 0.997 0.881 0.996 0.861 

 

As should be expected, all of the “Average” solution objective function values are strictly less 

than those of the nominal solutions (they are less than one). However, it can be seen that the 

“price of robustness” (or the amount by which the objective function value decreases from one) 

is low.  For both Marvin and McLaughlin, the price of robustness is under a percentage point 

for the low uncertainty set (0.4 and 0.2 percent, respectively). In the case of the high uncertainty 

set, the price of robustness is 2,1 and 0.4 percent, respectively, which is still low.  

How much is gained from using robust solutions as opposed to the nominal solutions? To 

quantify this it is necessary to compare values between Table 1 and Table 2. Consider, for 

instance, the Marvin data set on the Low uncertainty set. Table 1 shows an objective function 

value of 0.823, whereas in Table 2, an objective function value of 0.826 is observed. That is, the 

solution value obtained in the worst possible case in the low uncertainty set increased by only 
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0.3% when the robust solution is used. In order to obtain that improvement it is necessary to 

sacrifice 0.4% in the mean case. In general, the gains afforded by R-OPM-PSP are low in all of 

the instances. The best improvement is obtained by the Marvin instance in the high uncertainty 

set, with an increase in objective function value from 0.673 to 0.684 (a 1.1% increase) using the 

robust solution, at a cost of 2.1% in the expected objective function value.  

Overall, the results are not very encouraging. It is observed that even small price perturbations 

(within the low uncertainty set) can result in very large objective function value drops (17.7% 

and 8.7% for Marvin and McLaughling, respectively), and using robust solutions does relatively 

little to curve these drops (17.4% and 8.5% for Marvin and McLaughlin, respectively). That is 

to say, solutions are extremely sensitive to prices, and moreover, there do not seem to exist 

robust solutions that afford a substantial level of protection. 

    

 Figure 2 – Probability distribution of the NPV for each solution. 

In order to understand how the optimizer is actually changing the schedule in order to make 

solutions more robust, consider Table 4 presenting the tonnages extracted, cut-off grades and 

life of mine for each optimal solution. It can be seen that under higher uncertainty, the robust 

solution increases the average cut-off grade of the ore, thus resulting in a shorter life of mine. 

Figure 3 compares the yearly tonnage and cut-off grades for McLaughlin_limit of the nominal 

solution and the robust solution under high uncertainty.  It can be seen that the change in the 

average cutoff grades are more important in the first years, where the economical impact is 

higher on the NPV. 

Table 4 – Tonnages and average grades of the deterministic and robust solutions. 

Marvin Total tonnage Total ore Avg Au grade Avg Cu 

grade 

Deterministic 527.1 Mton 265.1 Mton 0.570 ppm 0.610 % 

Robust small unc. 519.7 Mton 258.2 Mton 0.577 ppm 0.617 % 

Robust medium unc. 510.7 Mton 251.5 Mton 0.584 ppm 0.623 % 

Robust high unc. 498.9 Mton 245.9 Mton 0.588 ppm 0.628 % 
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McLaughlin_limit Total tonnage Total ore Avg Au grade 

Deterministic 111.1 Mton 40.0 Mton 0.0862 oz/ton 

Robust small unc. 111.1 Mton 38.4 Mton 0.0877 oz/ton 

Robust medium unc. 111.1 Mton 37.8 Mton 0.0882 oz/ton 

Robust high unc. 111.1 Mton 36.6 Mton 0.0898 oz/ton 

 

 

Figure 3 – McLaughlin results for the deterministic case (up) and the robust case under high 

uncertainty (down). 

CONCLUSIONS 

 Mine planning solutions are very sensitive to price volatility. This paper provides a 

mathematical framework for quantitatively measuring this sensitivity and analysing its 

impact on real mine planning problems. Computational results suggests that even 

small changes in prices can result in tremendous differences in profits. It seems clear 

that price volatility is an important issue that should be further studied and better 

incorporated in mine planning methodologies.  
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 Robust optimization provides a tool to deal with metal price volatility. Robust 

optimization works by maximizing the value of the worst possible solution in an 

uncertainty set. It is known that Robust counterparts of linear programming models 

can be solved using Second Order Conic programming. In the specific case of R-

OPM-PSP, it is possible to adapt the algorithm of Bienstock and Zuckerberg, 

originally designed for OPM-PSP, to solve R-OPM-PSP. This paper shows that despite 

the fact the resulting R-OPM-PSP instances can be extremely large, the Bienstock-

Zuckerberg algorithm performs very well solving them. 

 It is empirically observed that the solutions of R-OPM-PSP tend to have a shorter life 

of mine than the solutions of OPM-PSP due to the use of higher cutoff grades 

(particularly on the first periods), and tend to result in smaller final pits. Increasing the 

level of uncertainty exacerbates these effects. 

 Computational results show that robust solutions obtained by solving R-OPM-PSP do 

not afford much protection in worst-case scenarios, even under small price 

perturbations. This suggests that in the context of open pit mine planning there is no 

such thing as a very robust solution.  

 Other stochastic optimization models should be studied to deal with metal price 

uncertainty. A multi-stage stochastic programming approach that considers recourse is 

much more likely to produce reasonable solutions. Though these solutions will suffer 

from the same inherent problems observed in this framework (very high losses due to 

small price perturbations), these solutions will allow planners to obtain a more realistic 

assessment of what a strategic plan is worth, in terms of NPV. What these results 

essentially show is that the high level of volatility make the mean price computed for a 

solution rather meaningless. 
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