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Abstract

Similar to the mixed-integer programming library (MIPLIB), we present
a library of publicly available test problem instances for three classical
types of open pit mining problems: the ultimate pit limit problem and
two variants of open pit production scheduling problems. The ultimate
pit limit problem determines a set of notional three-dimensional blocks
containing ore and/or waste material to extract to maximize value sub-
ject to geospatial precedence constraints. Open pit production scheduling
problems seek to determine when, if ever, a block is extracted from an
open pit mine. A typical objective is to maximize the net present value of
the extracted ore; constraints include precedence and upper bounds on op-
erational resource usage. Extensions of this problem can include (i) lower
bounds on operational resource usage, (ii) the determination of whether a
block is sent to a waste dump, i.e., discarded, or to a processing plant, i.e.,
to a facility that derives salable mineral from the block, (iii) average grade
constraints at the processing plant, and (iv) inventories of extracted but
unprocessed material. Although open pit mining problems have appeared
in academic literature dating back to the 1960s, no standard representa-
tions exist, and there are no commonly available corresponding data sets.
We describe some representative open pit mining problems, briefly men-
tion related literature, and provide a library consisting of mathematical
models and sets of instances, available on the Internet. We conclude with
directions for use of this newly established mining library. The library
serves not only as a suggestion of standard expressions of and available
data for open pit mining problems, but also as encouragement for the
development of increasingly sophisticated algorithms.
Keywords: mine scheduling, mine planning, open pit production schedul-
ing, surface mine production scheduling, problem libraries, open pit min-
ing library

1 Introduction

Mining is the process of extracting a naturally occurring material from the earth
to derive profit. Operations research has been used extensively in mining to plan
when and how to perform both surface and underground extraction; decisions
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entail how to recover and treat the extracted material, which is (i) metallic ores
such as iron and copper, (ii) nonmetallic minerals such as sand and gravel, and
(iii) fossil fuels such as coal.

Mining has five stages: (i) prospecting, or discovering a mineral deposit;
(ii) exploration (including resource modeling), or determining the value of the
deposit via estimation and simulation techniques, e.g., [33] and [20]; (iii) devel-
opment, i.e., obtaining land rights and stripping topsoil from the deposit; (iv)
exploitation, i.e., extracting the material; and (v) reclamation, i.e., restoring
the mined area to an environmentally acceptable state. Operations research
has been used in mining, primarily for the development and exploitation stages.
Studies evaluate the economic potential of a project, considering factors such as
the size, shape, and location of the deposit, the mining method (e.g., open pit
or underground), the deposit’s estimated ore content, estimated market prices,
and the rate of ore extraction. Near-optimal long-range operational mine plans
improve the economic viability of the project, or allow prospectors to turn their
attention to more economical deposits as soon as possible [36]. If the project
progresses, more detailed operational designs provide mine planners with spe-
cific extraction schedules at various levels of detail, e.g., monthly or yearly.

These operational plans suggest the sequence of extraction for notional three-
dimensional blocks containing estimated (deterministic) amounts of ore and
waste. Large excavators and haul trucks extract and subsequently transport the
material to a processing plant or to an intermediate site (e.g., a mill, a leachpad,
a stockpile), or to a waste dump, depending on the expected profitability of the
material and processing-plant capacity. The rate at which the material is exca-
vated and processed depends on initial capital expenditure decisions regarding
purchasing equipment such as haul trucks, loaders, and processing plants, and
installing infrastructure such as roads and rail lines. Processed ore can be sold
according to long-term contracts or on the spot market. Waste is left in piles,
which must ultimately be reclaimed when the deposit is closed. The rate at
which material can be extracted from the deposit is governed by production
constraints, while the rate at which it can be sent through a processing plant is
governed by processing constraints.

Figure 1 depicts a deep surface mine that is typical of hardrock-metal de-
posits containing copper or fossil fuel deposits containing coal. Overburden
(i.e., waste) must be removed before extraction can begin. Haul roads wind up
through the mine from the bottom of the pit to the surface. Extraction occurs
from benches, which are the floors from which material is mined.

The purpose of our paper is three-fold: (i) to introduce the reader to clas-
sical operational mine planning problems whose solutions support design and
scheduling in the development and exploitation phases of an open pit mining
project; (ii) to describe and provide data sets for variants of these problems
on which researchers can test existing and new algorithms using open-source
data; and (iii) to encourage researchers to develop new, more accurate models
and increasingly sophisticated algorithms to solve three types of open pit min-
ing problems: the ultimate pit limit problem and two kinds of open pit block
sequencing problems. This paper follows in the tradition of publicly available
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Figure 1: Schematic illustration of an open-pit mine. (Source:
http://visual.merriam-webster.com/energy/geothermal-fossil-energy/coal-
mine/open-pit-mine.php).

problem instances, beginning with NETLIB [23], OR-Library [6], TSPLIB [43],
and MIPLIB [9], all of which have spurred research interest in their respective
fields.

In the remainder of this section, we give background on open pit mining op-
erations, and explain constructs relevant for the optimization models we pose in
our paper; we then describe the purpose of our mining library. The subsequent
sections of this paper are organized as follows: In Section 2, we provide a brief
overview of academic work on open pit mining problems. We give a mathemat-
ical description of three types of open pit mining problems in Section 3. Section
4 details data instances, including the format for numerical values used. Section
5 concludes with current numerical results for open pit production scheduling
problems. We give the file format specifications in an appendix.

1.1 Background

A common construct in open pit mining problems is the notion of spatial ref-
erence points called blocks. Geometric sequencing constraints (see Figure 2 and
Figure 3) ensure that the pit walls are stable and that the equipment can access
the areas to be mined. These precedence constraints ensure that blocks imme-
diately affecting a given block’s ability to be mined are extracted before the
given block is extracted. The relationship between block precedences is clearly
transitive, i.e., if block a requires block b to be extracted, and block b requires
block c to be extracted, then block a also requires block c to be extracted; this
transitivity is implied by the original precedences. We can use this transitivity
property to describe a precedence relationship as immediate if it is not implied
by any other pair of precedences, allowing us to model precedence constraints
simply by enforcing immediate precedences in our models.
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Figure 2: Sequencing rules can be based, for example, on the removal of five
blocks above a given block, block 6 (left) or on the removal of nine blocks above
a given block, block 10 (right).

Figure 3: Sequencing approximation based on the removal of all blocks at a
45-degree angle above a given block, for three, eight and thirty levels

These sequencing rules can be thought of as approximations in strategic
planning models to those used for tactical production scheduling. For example,
if all the blocks on top of block number 10 in Figure 2 are removed, block 10
could be still surrounded by eight blocks on its level, rendering the extraction
of block 10 either extremely costly or impossible. In fact, “blocks” do not
exist in practical mining operations. They simply serve as modeling tools to
discretize the orebody. The units, sometimes termed “smallest mining units,”
that are used for scheduling purposes, must be representative of the mining
operation being modeled. (See, for example, [5] who present descriptions of and
formulations for suitable block sizes.) For production scheduling at the tactical
level, one may more realistically use aggregated blocks to fit the geology of the
operation and the time fidelity of the model; [47] present a clustering algorithm
based on a similarity index to aggregate blocks into these smallest mining units.
While Figure 2 may adequately represent sequencing in a “flat” mine such as
a limestone quarry or a bauxite mine, very complex sequencing rules may be
required, especially in underground operations (see, e.g., [41]) [11]. Ultimately,
we present the precedence format in our library in a very general way such that
the user may specify any set of blocks as predecessors of a given block.

The open pit production scheduling problem, whose variants we subsequently
mathematically define as (CPIT ) and (PCPSP), seeks to determine when, if
ever, to mine each block in the deposit and what to do with each block that is
extracted, i.e., send it to a particular type of processing plant or to the dump.
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The objective is to maximize the net present value gained from the extracted
material subject to spatial precedence constraints, and to various operational
constraints. The simplest variant of this problem might only contain a single
(upper bound) operational resource constraint, i.e., a production (or extraction)
upper bound. More complicated variants possess multiple operational resource
constraints, e.g., processing limits, lower bound operational resource constraints,
inventory balance, and/or blending requirements.

We introduce a simplified version of the production scheduling problem that
details the shape of the final pit, or part of the mine design. The ultimate pit
limit problem, which we later mathematically define as (UPIT ), takes as given
an undiscounted value for each block in a deposit; this value is based on a selling
price, an estimated quantity of ore and waste contained in each block, the corre-
sponding costs associated with block extraction, and, if applicable, processing.
The model then determines the pit boundary to maximize undiscounted ore
value. This problem balances the ore-to-waste (stripping) ratio with the cu-
mulative value of blocks in the pit boundaries. The ultimate pit limit problem
ignores the dimension of time, and, hence, the time value of money. Omissions
due to the lack of a temporal aspect include operational resource constraints, ore
blending constraints, and stockpiling considerations. The problem also assumes
that the cutoff grade, i.e., the grade that separates ore from waste, is fixed. The
assumption is that blocks above a threshold ratio of ore to total tonnage are sent
to a processing plant, whereupon value (based on selling price less extraction
and processing costs) is derived from the block, while those whose ratio falls
below the threshold are sent to the dump, whereupon a cost is incurred from
having extracted the block. Open-pit mine design, in design problems more
general than (UPIT ), also includes the location and type of haulage ramps and
additional infrastructure, as well as long-term decisions regarding the size and
location of production and processing facilities.

1.2 Traditional and current solution methodologies

The solution of various instances of the ultimate pit limit problem, differenti-
ated by price, results in a series of nested pits; a given (notional) selling price
for the ore defines the smallest pit and increasing ore prices define larger, eco-
nomically viable pits. Traditional open-pit production scheduling groups the
nested pits within the ultimate (or largest) pit into pushbacks, where a single
pushback is often associated with similar operational resource usage, e.g., ex-
traction equipment. Within each pushback (which contains only a small subset
of the overall number of blocks within the block model), an extraction sequence
is then determined. Among pushbacks, an extraction sequence is also delin-
eated. Depending on the homogeneity of the material being extracted and the
time fidelity of the model, blocks in some pushbacks may be extracted before
all blocks in a previously started pushback have been mined. The basic premise
of this approach is that one can determine a cutoff grade policy to maximize
net present value (NPV) subject to capacity and other operational constraints.
Higher cutoff grades in the initial years of the project lead to higher overall
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NPVs; over the life of the mine, the tendency is to reduce the cutoff grade to a
break-even level. [35], [22], and [31], among others, address cutoff grades.

Three problematic aspects of this approach can be (i) the assumption of a
fixed cutoff grade, which depends on an arbitrary delineation between ore and
waste; (ii) the use of notional (and monotonically increasing) prices to construct
arbitrarily defined nested pits or pushbacks; and (iii) the piecemeal approach
to the entire optimization problem, which disregards the temporal interaction
of operational resource requirements. Naturally, this can lead to suboptimal
solutions to the production scheduling problem.

More recently, hardware, software, and algorithmic developments have al-
lowed instances of (CPIT ) and (PCPSP) to be solved as a monolithic problem.
The corresponding models possess binary variables that determine whether or
not a given block is mined in a certain time period. In some cases, additional
(continuous) variables indicate the amount of a block sent to a particular desti-
nation in a certain time period. The objective maximizes net present value. The
constraints, generally linear, reflect the definition of the production scheduling
problem.

Many open pit mines are discretized into tens of thousands, or even millions
of blocks. The ultimate pit limit problem can be viewed as a maximum clo-
sure problem [37], and fast solution techniques currently solve even the largest
instances well. However, the open pit production scheduling problem and its
variants possess only an underlying network structure, i.e., they are not net-
work flow problems in and of themselves. This problem and its variants not
only account for time, which increases the number of variables dramatically,
but also possess complicating side constraints to incorporate restrictions such
as minimum and maximum operational resource usage per time period; model
instances usually contain between 10 and 20 time periods although some in-
stances, e.g., those that consider time fidelity finer than a year, can contain as
many as 100 time periods. Corresponding problem instances contain millions or
tens of millions of binary variables and hundreds of thousands, or even millions,
of constraints.

2 Literature Review

The seminal work of [37] provides an exact and computationally tractable (network-
based) method for solving the ultimate pit limit problem; [49] and [27], [26], and
[15], among others, extend this work. However, a solution to the ultimate pit
limit problem specifies only the economic envelope of profitable blocks given
pit-slope requirements, and necessitates that the revenue associated with the
extraction of a block is fixed a priori. Furthermore, the problem ignores the
time aspect of the production scheduling problem, and, hence, the associated
operational resource constraints. The ultimate pit limit problem is fairly well
defined. However, the production scheduling problem has many variants, all of
which contain precedence constraints, as the ultimate pit limit model does. In
addition to these constraints, production scheduling problem variants possess at
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least one upper limit on an operational resource constraint, and may accommo-
date one or more of the following considerations: (i) blending, (ii) lower bounds
on production, (iii) lower bounds on processing, (iv) upper bounds on produc-
tion, (v) upper bounds on processing, (vi) inventory, and/or (vii) variable cutoff
grade. (Note that this terminology is a misnomer: A variable cutoff grade im-
plies that the grade at which a block is classified as ore is allowed to vary based
on the block and time period; however, this situation is better expressed as “no
cutoff grade.”) In describing the open pit production scheduling models below,
we mention those aspects that the models include.

The earliest work that addresses sequencing together with operational re-
source constraints, i.e., the production scheduling problem, is perhaps found in
[29], who proposes a very general linear program to maximize net present value
subject to sequencing and operational resource constraints; he allows for a vari-
able cutoff grade and proposes Dantzig-Wolfe decomposition to solve model
instances. Because of the state of hardware and software at the time, he illus-
trates only small examples. Early computational work relies on the following
simplifications: (i) blocks are aggregated into strata, e.g., [12], [32], and [24];
(ii) binary block extraction decisions are relaxed to be continuous, e.g., [48],
[21]; and/or (iii) the monolithic problem is addressed in stages, e.g., [46], [44].
Heuristics, e.g., genetic algorithms, also appear in the literature, e.g., [19], [51],
though the examples tested are small.

[13] provide an exact approach to solving a monolithic production scheduling
problem by defining variables representing whether a block is mined by time
period t. The model contains precedence constraints, as well as operational
resource constraints, processing plant grade constraints, and inventory balance
constraints; they use a fixed cutoff grade. The authors use a branch-and-cut
strategy combined with a heuristic to solve model instances. [42] assumes a
fixed cutoff grade, and includes upper and lower bounds on processing, and
upper bounds on production. He also includes a grade constraint. The author
constructs aggregate “fundamental trees” to reduce the size of his production
scheduling problem.

Researchers have used Lagrangian Relaxation, e.g., [18], in order to maximize
net present value subject to constraints on production and processing. [2] extend
this work by iteratively altering the values of the Lagrangian multipliers until the
solution to the relaxed problem meets the original side constraints, if possible.
[30] includes a variable cutoff grade. This research has been successful at solving
some instances, though authors also report difficulty in obtaining convergence,
or even determining a feasible solution for the monolithic problem. In addition
to Lagrangian Relaxation, authors develop heuristics to generate good, feasible
integer solutions. [3] assume a fixed cutoff grade and impose upper bound
constraints on production and processing. The authors develop a random, local
search heuristic that seeks to improve on an incumbent solution by iteratively
fixing and relaxing part of the solution, and that produces solutions for the
largest model instances solved to date, i.e., containing as many as four million
blocks and 15 time periods.

Given the size and complexity of production scheduling problems, researchers
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realize that the ability to solve the associated linear programming relaxation
without the use of the simplex method is fundamental to solving correspond-
ing large-scale integer programs. The following authors exploit this idea: [10]
propose an aggregation scheme for their production scheduling model, which
assumes a variable cutoff grade and possesses upper bound constraints on pro-
duction and processing. The authors introduce aggregates of blocks grouped
by precedence and use this construct to approximate a solution for the origi-
nal, mixed integer program. [25] extends results from this model variant with
a different type of aggregation and also presents ideas for using Lagrangian
Relaxation in this context. [4] present two formulations which rely on the con-
struct of a “mining-cut”; this construct helps to aggregate blocks appropriately.
While one of the authors’ formulations relies solely on mining-cuts, the other
uses both blocks and mining-cuts. The advantage of the latter formulation is
more accurate modeling of pit slopes, while the former formulation contains
fewer variables and is therefore more tractable. [16] propose a new algorithm
to solve linear programming relaxations of large instances of the same problem,
and a set of heuristics to solve the corresponding integer program. The related
algorithms of [8] include the decision of whether the extracted material should
be sent to a processing plant or to the waste dump, i.e., they include a variable
cutoff grade.

[40] review optimization models for long-term, open-pit scheduling. See [39]
for a detailed literature review covering both open pit and underground mine
planning. In this paper, we focus specifically on mining applications. However,
the structure of our problem variants is related to that of other network mod-
els with side constraints, e.g., generalized assignment, multi-commodity flow,
and constrained shortest path. See, e.g., [1], [14], and the references contained
therein.

3 Model Description

We proceed to set forth three mathematical models relevant to open pit mining.
In Subsection 3.1, we give notation for all three models. Script letters represent
set names, while upper- and lower-case letters in Roman font denote parameters;
standard lower-case letters of x and y serve as our variables. Parameter and
variable names decorated with hats or tildes correspond to related notation
that differs by index depending on the model formulation in which it is used.
Subsection 3.2 describes the ultimate pit limit problem. Subsection 3.3 gives the
constrained pit limit problem. Finally, Subsection 3.4 introduces the precedence
constrained production scheduling problem. Subsections 3.5 and 3.6 provide a
discussion regarding the strength of the formulation and modeling implications
for the three models we set forth, respectively.

3.1 Notation

• Indices and sets:
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? t ∈ T : set of time periods t in the horizon.
? b ∈ B: set of blocks b.
? b′ ∈ Bb: set of blocks b′ that are predecessor blocks for block b.
? r ∈ R: set of operational resource types r.
? d ∈ D: set of destinations d.

• Parameters:
? pb (p̂bt, p̌bd, p̃bdt): profit obtained from extracting (and processing)

block b (at time period t and/or sending it to destination d) ($).
? α: discount rate used in computing the objective function (profit)

coefficients.
? qbr (q̂brd): the amount of operational resource r used to extract and,

if applicable, process, block b (when sent to destination d) (tons).
? Rrt: minimum availability of operational resource r in time period t

(tons).
? Rrt: maximum availability of operational resource r in time period t

(tons).
? A: arbitrary constraint coefficients on general side constraints.
? a, ā: arbitrary lower and upper bounds, respectively, on general side

constraints (vectors with the number of rows equal to that in A).
• Variables:

? x̂b = 1 if block b is in the final pit design, 0 otherwise.
? xbt: 1 if we extract block b in time period t, 0 otherwise.
? ybdt: the amount of block b sent to destination d in time period t

(%).

3.2 The Ultimate Pit Problem

The simplest model we consider is known as the ultimate pit limit problem,
(UPIT ), or the maximum-weight closure problem [1]. The problem entails
determining only the envelope of profitable blocks within the orebody and,
hence, there is no temporal dimension and there are no operational resource
constraints. The constraint set consists merely of precedences between blocks;
the corresponding matrix of left-hand-side coefficients is totally unimodular,
rendering this problem a network flow problem. In essence, given the value of
each block and no constraints on operational resources required to retrieve a
block, this problem seeks to determine the instantaneous profit of an open pit,
and, correspondingly, which blocks must be extracted, as dictated by precedence
constraints, to realize this profit.

(UPIT ) max
∑
b∈B

pb x̂b

subject to x̂b ≤ x̂b′ ∀b ∈ B,∀b′ ∈ Bb (1)

x̂b ∈ {0, 1} ∀b ∈ B (2)

The objective maximizes the undiscounted value of all extracted blocks.
Constraints (1) ensure that each block is extracted only if its predecessor blocks
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are extracted. The set of predecessor blocks appropriately defines the slopes to
support the ultimate pit design. Note that variables need not be restricted to
be binary because of the total unimodularity of the constraint matrix (see, for
example, [1] for a reduction of (UPIT) to network flow). [27] provide a fast algo-
rithm for this problem; [26], and [15] provide updates. The solution to (UPIT )
determines only the design of a pit, i.e., its boundaries. The solution to this
problem can, in fact, be used to eliminate blocks from consideration in more
complicated variants; see, e.g., (CPIT ). We discuss this in §3.3.

3.3 The Constrained Pit Limit Problem

The constrained pit limit problem, (CPIT ), generalizes the ultimate pit limit
problem above by introducing a time dimension, and associated constraints,
into the model. The underlying assumption regarding the time fidelity in both
this model and the one presented in the subsequent subsection is that a block
can be mined in its entirety in a single time period. In (CPIT ), not only are
precedence constraints considered, but per-period operational resource restric-
tions are present as well. (CPIT) takes as inputs (i) a profit per block, (ii)
minimum and maximum operational resource requirements per time period,
and (iii) a set of precedences for each block. With these inputs, a solution to
(CPIT) suggests a profit-maximizing schedule subject to operational resource
constraints and constraints regarding precedences between blocks. (CPIT ) does
not account for details such as stockpiling.

(CPIT ) max
∑
b∈B

∑
t∈T

p̂bt xbt

subject to
∑
τ≤t

xbτ ≤
∑
τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb, t ∈ T (3)

∑
t∈T

xbt ≤ 1 ∀b ∈ B (4)

Rrt ≤
∑
b∈B

qbrxbt ≤ Rrt ∀t ∈ T , r ∈ R (5)

xbt ∈ {0, 1} ∀b ∈ B, t ∈ T (6)

(CPIT ) maximizes net present value of the extracted blocks over the life
of the mine. Note that p̂bt is computed as pb

(1+α)t . Constraints (3) impose

precedence. That is, if block b′ is an immediate predecessor of block b, then
b′ must be extracted in the same time period as or prior to b. Constraints (4)
require that each block can be extracted no more than once. Constraints (5)
ensure that the minimum and maximum operational resource constraints are
satisfied each period. We assume here that qbr > 0, which is a commonly used
in practice and permits feasible solutions more readily than without it; as such,
the formulation only contains lower and upper bounds but omits constructs that
would lend themselves to blending. (See 3.4.) All variables are binary.
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[16] treat a special case of this model (to which they also refer as (CPIT ))
in which Rrt = 0 and Rrt = Rr ∀t. Because of the structure of their problem
and because of the assumption that qbr > 0, the authors are able to eliminate
blocks from consideration in their optimization model if they are not included
in the corresponding solution of (UPIT ). Note that (CPIT ) and (UPIT ) are
related through the following fact, which we state without proof:

Fact: For the constrained pit limit problem in which we maximize net
present value, eliminating constraints (5) and solving the resulting (relaxed)
problem yields an optimal solution with xbt = 0 for all t ≥ 2, i.e., we obtain the
solution corresponding to that provided by solving (UPIT ).

Note that unlike (UPIT ), (CPIT ) is strongly NP-hard (see [28] for a proof of
this). [17] solves instances of (CPIT ) with Rrt = Rr 6= 0 ∀t and Rrt = Rr ∀t.
However, these instances are smaller than those considered in [16]. Note also
that [17] cannot reduce the size of their models a priori by considering only
those blocks present in the corresponding solution of (UPIT ). This is because,
for example, a lower bound on processing might require a non-economical block
to be sent to the processing plant in order to preserve feasibility of the instance.

3.4 The Precedence Constrained Production Scheduling
Problem

A generalization of (CPIT ) determines whether a block, if extracted, is sent
to the processing plant or to the waste dump. In this case, in addition to our
variable xbt which equals 1 if we extract block b in time period t, and 0 otherwise,
we employ a second variable, ybdt, which equals the amount of block b we send
to destination d, e.g., a processing facility, in time period t. We must ensure
that a block is only sent to a processing facility if it is extracted. In essence,
we are determining a profit-maximizing extraction sequence of blocks subject
to operational resource constraints, as before, but we are also now determining
the location to which these blocks are sent. Correspondingly, we record the
associated profit (or cost), which is no longer determined a priori, and also the
corresponding amount of operational resource usage, which can differ depending
on the destination to which a block is sent. We also allow for side constraints
more general than upper and lower bounds on operational resource consumption.
The precedence constrained production scheduling problem, (PCPSP), consists
of solving:
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(PCPSP) max
∑
b∈B

∑
d∈D

∑
t∈T

p̃bdt ybdt

subject to
∑
τ≤t

xbτ ≤
∑
τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb, t ∈ T (7)

xbt =
∑
d∈D

ybdt ∀b ∈ B, t ∈ T (8)∑
t∈T

xbt ≤ 1 ∀b ∈ B (9)

Rrt ≤
∑
b∈B

∑
d∈D

q̂brdybdt ≤ Rrt r ∈ R, ∀t ∈ T (10)

a ≤ Ay ≤ ā (11)

ybdt ∈ [0, 1] ∀b ∈ B, d ∈ D, t ∈ T (12)

xbt ∈ {0, 1} ∀b ∈ B, t ∈ T (13)

(PCPSP) maximizes net present value of the extracted blocks over the life of
the mine. Note that p̃bdt is computed as p̌bd

(1+α)t . Constraints (7) enforce prece-

dence requirements for all blocks and time periods. Constraints (8) require that
the extraction and processing variable values are consistent. That is, if a block
is not extracted, its contents cannot be sent to any destination, and if a block is
extracted, the entirety of its contents must be sent somewhere. Constraints (9)
restrict a block to be extracted at most once over the horizon. Constraints (10)
require that no more operational resource than available is used for extraction
purposes. Constraints (11) represent general side constraints, discussed in more
detail immediately below. Note that because x can be written as a function
of y (see (8)), we do not include the former variable in this constraint. Vari-
ables that determine the amount of a block sent to a particular destination in a
given time period are restricted to be between 0 and 1. Variables representing
whether or not a block is extracted in a given time period are restricted to be
binary. In a perhaps more realistic setting, the above formulation would con-
tain y variables that would also be restricted to be binary. That is, blocks are,
generally speaking, indivisible entities, and therefore the entire block would be
sent to a single destination. [7], (2010) present the formulation, (PCPSP), as
given above. [13] present a special case of this problem in which the cutoff grade
is fixed at extraction but variable when ore is taken from the stockpile, and the
lower bounds on resource consumption are equal to zero.

Relating (CPIT ), see Subsection 3.3, to (PCPSP ), we can now state the
following:

Observation: For the special case in which we remove constraints (11)
and fix the destination for each block b to the value of the index db such that
xbt = yb,db,t ∀b, t, (PCPSP ) reduces to (CPIT ). In other words, in the
absence of constrains (11), (PCPSP ) can be thought of as a relaxation of
(CPIT ) in which the destination of each block is not determined a priori.
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The side constraints we mention above (see constraints (11)) can model cases
in which mining operations are governed by more than simply “common sense,”
sequencing, and operational resource constraints in the form of knapsacks. For
example, these constraints might represent a minimum grade constraint:

Letting:
• M: set of mineral types.
• gbm: the amount of mineral m contained in block b (tons).
• Gm: minimum acceptable average amount of mineral m in any single time

period (tons).
• Gm: maximum acceptable average amount of mineral m in any single time

period (tons).
we state such a grade constraint as follows:

Gm
∑
b∈B

ybdt ≤
∑
b∈B

gbmybdt ≤ Gm
∑
b∈B

ybdt ∀d ∈ D,m ∈M, t ∈ T (14)

This ensures that minimum and maximum grade constraints for all relevant
types of ore (m ∈ M) processed at the corresponding processing plants (d ∈
D) are adhered to in each time period. Note that “mineral” could loosely be
interpreted as a contaminant. So, for example, a processing plant might only
accept a collection of blocks in a given time period with a minimum level of
copper and a maximum level of arsenic. It is possible to specify both a non-zero
minimum and a finite maximum for the same mineral, and the above formulation
allows for this.

Constraint (14) can also be thought of as a special case of constraints (10)
with the right hand side equal to zero. Other examples of constraints (11) would
include (i) a minimum number of blocks must be extracted on a given level; (ii)
ore is allowed to be stockpiled; (iii) the production and/or processing rate is
variable, e.g., it is possible to purchase extraction equipment and/or increase
the capacity of the processing plant(s); (iv) the bottom of the pit must contain
a certain number of blocks; (v) sequencing constraints of the type “one of the
following n blocks must be extracted”; and (vi) the number of areas that can be
simultaneously mined is limited due to geotechnics and equipment availability.

As explained above, (CPIT ) relates to (PCPSP) in that the former is a
fixed cutoff grade equivalent problem of the latter (if constraints (11) are not
present). (UPIT ) relates to (CPIT ) in that it is a relaxed, single time period
problem version of (CPIT ). Although we have not encountered models of such
type in the literature, one could consider a variant (UPCPSP ), i.e., (PCPSP )
without constraints (10) and (11) and reduced to one time period. This allows
for the following classification:

Relationship: (UPIT ) and (CPIT ) are fixed cutoff grade variants of
(PCPSP ) and (U − PCPSP ), respectively, where, on one hand, (UPIT ) and
(U − PCPSP ) are solvable in polynomial time, and (CPIT ) and (PCPSP )
are strongly NP-hard.
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3.5 Strong Formulation

We have presented a “strong” formulation of (CPIT ) and (PCPSP) in that we
have represented the precedence constraints as the sum on time periods t of the
extraction variables on the left hand side of the inequality. Equivalently, we
could have expressed (3) and (7) as:

xbt ≤
∑
τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb t ∈ T

In fact, this leads to a much weaker linear programming relaxation objective
function value [34]. However, the weaker formulation appears frequently in the
literature, e.g., [18], [42], and [40].

3.6 Model Assumptions and Extensions

[29] poses a general model, yet issues caveats regarding the assumptions un-
der which the model is valid. These caveats apply to (UPIT ), (CPIT ), and
(PCPSP), and can be stated as follows: (i) the deposit in question can be
characterized by three-dimensional notional blocks, and all requirements, e.g.,
production and processing constraints, can be represented as a function of the
characteristics of these blocks; (ii) the spatial precedence constraints, in partic-
ular, can be characterized as a function of the position of the blocks, and the
spatial precedence relationships do not change over time or as a function of the
material removed from the pit; (iii) all model restrictions are linear or can be ex-
pressed as linear functions; and (iv) the data given are accurate representations
of the true values.

Let us examine these assumptions in turn. Our optimization models require
the discretization of blocks, as stated in (i), and precludes dynamically evolving
“rules” (assumption (ii)) such as redefining precedences depending on the ma-
terial removed; at best, dynamic rules could only be incorporated in a decision
space so large that current algorithms and hardware could not solve problem
instances of a practical size. Not all functional forms are linear (assumption
(iii)); in particular, blending constraints can introduce nonlinearities. However,
current software capabilities of solving nonlinear integer models fall far short of
what is necessary for realistic instances. Regarding assumption (iv), the data
are usually not known with certainty. Specifically, there is a finite number of
samples taken to assess the content of any block, and, correspondingly, these
samples are not completely accurate. Therefore, the ore content in a block
cannot be known with accuracy. It is possible to model a distribution of ore
content. However, the models we present do not accommodate this. Stochas-
tic models, although more realistic, yield instances orders of magnitude larger
than their deterministic counterparts, and present the corresponding tractabil-
ity issues associated with them. Finally, we limit the scope of our models to
consider only the mine sequencing operation. We do not consider the strategic
planning questions of locating facilities or haulage roads, for example, nor the
downstream activities of the ore, i.e., we do not consider the entire supply chain.

14



Some of our assumptions are necessary for the scope of the models we con-
sider, and/or for our modeling paradigm, and are appropriate for long-term,
undetailed models. However, other assumptions can be unrealistic for mining
operations. Therefore, the goal of presenting the three models as we have done
is not only to provide background on existing models with a view to encourag-
ing researchers to make them more tractable, but also to promote researchers
to develop better models in general, relaxing the assumptions we set forth in
the previous paragraph. In the latter endeavor, our models become obsolete,
but the data we provide should help design and test these improved models.

Among the most interesting and pressing unaddressed challenges, in addition
to solving large instances of the production scheduling variants we discuss in
this paper, we propose incorporating the following aspects within a large-scale
production schedule:

1. Optimal phase design: Rather than scheduling the entire mine for
extraction in its entirety, a mine may be divided into phases for operational
feasibility. The design of each phase might be determined, together with
a corresponding extraction schedule for each phase.

2. Optimal haul road construction: The location of haul roads affects the
costs of extraction and even the accessibility of blocks. Determining the
location of the haul roads might shorten extraction time while preserving
the most profitable blocks.

3. Imposition of pit bottom size restrictions: Equipment maneuver-
ability may dictate that the bottom of the pit must be at least a certain
size. Enforcing this size may be necessary for safety considerations.

4. Imposition of maximum number of active area restrictions: Many
active areas are difficult to maintain because of equipment availability and
its ability to transit to remote areas of the pit. Maintaining the number of
active areas below a certain number lowers costs and allows for practical
considerations of transit time in the pit.

5. Optimal inventory management policies: Stockpiling ore allows for
its future sale and buffers against shortfalls, but requires that the mate-
rial be rehandled. Determining optimal amounts of ore to stockpile may
increase profits, depending on market conditions.

6. Optimal fleet sizing: Considering the number and type of trucks and
other transport systems by accounting for haul road restrictions, inter alia,
dictates a mine’s production capacity and ability to access ore in early
time periods. Depending on market conditions, extracting and selling
more material sooner may be more profitable, if processing capabilities
are adequately matched.

7. Optimal processing capabilities: Given sufficient extraction capacity,
a mine may wish to consider expanding its processing capabilities to make
available more salable material sooner. Conversely, a mine may wish to
downsize, limiting its capital expenditures.

8. Incorporation of stochastic data: Neither price and cost data nor ore
grade data are known with certainty. A stochastic mathematical program
in which various price and/or ore grade scenarios are considered could
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yield a more accurate model and corresponding results.
9. Determination of the optimal point of transition between an

open pit and underground operation: Open pit mines can transi-
tion underground when the pit becomes deep enough because it becomes
increasingly expensive to maintain pit slopes flat enough to avoid wall
failure. Carefully considering the depth of transition might avoid subop-
timally prolonging surface extraction.

10. Incorporation of mine-level decisions into the entire supply chain:
The output of a mine is only one aspect of the mineral supply chain in
which raw materials must arrive at mine sites to enable operations to pro-
ceed, and final product must reach markets to yield timely profits or to
meet long-term contracts. Considering sources upstream from a mine and
destinations downstream from a mine together with extraction decisions
might enhance a system larger than the mine itself.

4 Using Minelib

We characterize data for model instances of the above problem variants as fol-
lows: Fundamental to each instance is a geometric block model, which gives
x-, y- and z- coordinates for each block in the deposit. Correspondingly, we
require the following characteristics: (i) the amount of ore contained in the
block, differentiated, if applicable, by type; (ii) if applicable, the total amount
of contaminant in the block; and (iii) the total tonnage of the block.

We also require characteristics of the mining operation: the minimum and
maximum bounds on all operational resources, e.g., extraction equipment (for
bounds on production), and/or processing equipment (for bounds on process-
ing). For variable cutoff grades, we require acceptable minimum and maximum
grades to be passed through the processing plant, while for a fixed cutoff grade,
we require the cutoff above which the material is ore and below which the
material is waste. Correspondingly, we must specify the costs and/or profits
associated with sending a given block to a particular destination. Finally, we
require the horizon over which we plan extraction, and the discount factor which
we apply to the value of each block.

To this end, we separate the data into the following:
1. The block-model descriptor file containing the block’s identifier, i.e., loca-

tion, followed by various block characteristic values.
2. The block-precedence descriptor file containing immediate precedence re-

lationships for each block in the model.
3. The optimization-model descriptor file containing the necessary data to

populate the models (UPIT ), (CPIT ), and (PCPSP).
The exact specifications of each of these descriptors are given in the ap-

pendix. We preliminarily provide some data sets to populate instances of
(UPIT ), (CPIT ), and (PCPSP) at http://mansci.uai.cl/minelib. We plan
to add data sets to this library as they become available to us for public use.

Each data set is given, along with the corresponding name of the data set,
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the number of blocks (which ranges from 1,000 to 6,000,000), the number of im-
mediate precedences (which ranges from about 4,000 to 73,000,000), the number
of time periods (which ranges from 6 to 30), the number of operational resource
constraints of the type given in (CPIT ) (which ranges from 1 to 4), the number
of operational resource constraints of the type given in (PCPSP) (which ranges
from 2 to 4), the number of destinations of the type given in (PCPSP) (which
ranges from 2 to 4), and the number of general constraints of the type given in
(PCPSP). These files may be downloaded for academic purposes.

Name # blocks # precedences # periods
Newman1 1,060 3,922 6
Zuck small 9,400 145,640 20
D 14,153 219,778 12
Zuck medium 29,277 1,271,207 15
P4HD 40,947 738,609 10
Marvin 53,271 650,631 20
W23 74,260 764,786 12
Zuck large 96,821 1,053,105 30
SM2 99,014 96,642 30
McLaughlin

limit
112,687 3,035,483 15

McLaughlin 2,140,342 73,143,770 20

Table 1: Characteristics of instances

5 Current Results

Table 1 lists the mine instances currently included in our database, along with
their problem sizes given as the number of blocks, precedences and time periods
for each instance. Note that in determining the number of time periods for
each instance, we ensure that the time horizon length is sufficient to extract all
blocks in the mine for the LP relaxation variant of the problem, which includes
all operational resource constraints given for a particular instance. We list the
instances, increasing by the number of blocks. Newman1 is a small, academic data
set. Zuck small, medium and large are fictitious mines [52]. D is a copper
deposit located in North America. P4HD is a gold and copper mine located in
North America [45]. Marvin is a well-known test mine that is provided with the
Whittle software [50]. W23 consists of phases 2 and 3 of a gold mine located in
North America. SM2 is fictional, and is based on a nickel mine located in Brazil.
McLaughlin is a defunct gold mine in California, and McLaughlin limit is its
final pit computed by the providers; these data sets appear in [45].

Table 2 presents details regarding (UPIT ) and (CPIT ) instances correspond-
ing to the data sets in Table 1. Each block has a predefined destination and a
corresponding block value. The block values do not differ between instances of
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Name
(UPIT )
objective

value

(CPIT )
|R|

(CPIT ) LP
upper
bound

(CPIT )
Best known

objective

Gap
(%)

Newman1 26,086,899 2 24,486,184 23,483,671 4.1%
Zuck

small
1,422,726,898 2 854,182,396 788,652,600 7.7%

D 652,195,037 2 409,498,555 396,858,193 3.1%
Zuck

medium
1,075,124,490 2 710,641,410 615,411,415 13.4%

P4HD 293,373,256 2 247,415,730 246,138,696 0.5%
Marvin 1,415,655,436 2 863,916,131 820,726,048 5.0%
W23 510,973,998 3 400,653,199 392,226,063 2.1%
Zuck

large
122,220,280 2 57,389,094 56,777,190 1.1%

SM2 2,743,603,730 2 1,648,051,083 1,645,242,774 0.2%
McLaughlin

limit
1,495,726,474 1 1,078,979,501 1,073,327,197 0.5%

McLaughlin 1,495,886,962 1 1,079,024,268 1,073,530,279 0.5%

Table 2: (UPIT ) objective function value, (CPIT ) LP upper bound and the ob-
jective function value corresponding to the best-known integer-feasible solution
for each instance

(UPIT ) and (CPIT ). For (UPIT ), we present the optimal objective function
value for each instance. For (CPIT ), we first present the number of operational
resource constraints per period (|R|). In most of the cases, there are two ca-
pacity constraints per period: one on the total tonnage extracted, and another
on the total tonnage processed. In some cases, an operational resource con-
straint includes both lower and upper bounds though in others, the constraint
only consists of an upper bound. Many bounds are time-invariant, although
our file format allows for time-varying bounds. In the next column, we present
the optimal value of the LP relaxation for each instance of (CPIT ), that is,
the optimal value obtained after relaxing integrality on the variables. We note
that this value provides a valid upper bound on the optimal objective function
value of the corresponding instance. Moreover, this value appears to provide
a tight bound [17], [16]. We include, in the last two columns, the objective
value corresponding to the current best-known integer-feasible solution for each
instance, and the gap of this solution computed as the relative difference be-
tween this feasible solution, obtained using a modified version of the TopoSort
heuristic [38], and the LP upper bound, computed using a modified version
of Bienstock-Zuckerberg’s algorithm [8]. We provide details regarding how to
obtain these solutions on the website.

Finally, Table 3 presents details about our (PCPSP) instances. We provide
the number of destinations (|D |), the number of operational resource constraints
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Name |D | |R| LP upper Best known Gap
bound objective (%)

Newman1 2 2 24,486,549 23,658,230 3.4%
Zuck

small
2 2 905,878,172 872,372,967 3.7%

D 2 2 410,891,003 406,871,207 1.0%
Zuck

medium
2 2 750,519,109 675,931,038 9.9%

Marvin 2 2 911,704,665 885,968,070 2.8%
W23 4 7 387,693,394 0 100%
Zuck

large
2 2 57,938,790 57,334,014 1.0%

SM2 2 2 1,652,394,327 1,650,439,213 0.1%
McLaughlin

limit
2 1 1,324,829,727 1,321,662,551 0.2%

McLaughlin 2 1 1,512,971,680 1,510,126,435 0.2%

Table 3: (PCPSP) details, LP bound and objective function value corresponding
to the best-known feasible solution for each instance

per period (|R|), the optimal value of the LP relaxation of each problem and
the objective function value corresponding to the best-known integer-feasible
solution. All these instances have more than one destination. In most cases,
there are two destinations (i.e., extract and send to the waste dump, or extract
and process). The only exception occurs for the instance W23, which contains
three additional blending constraints with lower and upper bounds. The op-
erational resource constraints per period are the same as those in the (CPIT )
instances. None of these instances includes general side constraints (see con-
straint (11)). As expected, LP upper bounds for PCPSP (variable cutoff grade)
are slightly higher than LP upper bound of CPIT (fixed cutoff grade), except
for W23 which has additional constraints. We also note that mine P4HD does
not have a (PCPSP) instance because data are only available for the case of
a fixed cutoff grade. Similar to the (UPIT ) and (CPIT ) instances, LP values
were computed using a modified version of Bienstock-Zuckerberg’s algorithm,
and feasible solutions were obtained with a modified version of the TopoSort
heuristic. Because instance W23 has blending constraints, TopoSort could not
find a feasible solution for this problem.
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Appendix: File Format Specifications

A General assumptions

All files are ASCII, and lines beginning with the character ’%’ are assumed
to be comments. Each line contains fields delimited (separated) by a space, a
horizontal tabular character, or a colon character (ASCII codes 32, 9 and 58,
respectively). All separators at the beginning of a line are discarded. Multiple
contiguous separators are treated as a single separator.

All entries are of the form <keyword> : <parameter type>, or simply, a
sequence of <parameter type> definitions. <keyword> is an alphanumerical
name used to identify certain entries, and<parameter type> defines a variable or
data of a certain type. The types <str>, <int>, <char> and <dbl> correspond
to a string (not containing a separator), an integer, a character, or a double type,
as in C and other popular programming languages. We assume that all entries
are given in the order specified in this document.

We introduce a flexible format, because this is the way in which many prac-
titioners transfer information about block models at the time of this writing.
By maintaining the status quo, we hope that the mining community will con-
tribute to and use the library. Additionally, in practice, not all mines use the
same information. For example, in some mines, the blocks have information on
three different concentrations of minerals; some information might pertain to
contaminants, while other information might pertain to sub-products. Having
that information is essential to compute correct values for the block depending
on the processing technology used.

B The Block-Model Descriptor File

The Block-Model Descriptor File stores model information at a block-by-block
level. Each line in the file corresponds to a block in the model. All lines have
the same number of columns. These columns are organized as follows:

<int id> <int x> <int y> <int z> <str1> . . . <strk>
Each row contains the following information about a block:
• id stores a unique identifier for the block, where the block identifiers are

numbered, starting with zero.
• x, y, z represent the coordinates of the block, where a zero z-coordinate

corresponds to the bottom-most shelf in the orebody and the z-axis points
in the upwards direction. The y-axis points directly towards the viewer
while the x-axis points to the left of the viewer.

• str1, . . . , strk represent optional user-specified fields that may represent,
e.g., tonnage, ore grade, or information about impurities. These values can
be of any pure type declared before and must comply with our delimiter
rules for parsing. This flexibility is allowed to match the usual formats
used in the industry.
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C The Block-Precedence Descriptor File

The Block-Precedence Descriptor File articulates precedence relationships be-
tween blocks in the model. Information is represented at a block-by-block level.
Each line in the file corresponds to a block in the model and its corresponding
set of predecessors. Precedence relationships are described as follows:

<int b> <int n> <int p1> . . . <int pn>
Each row gives the following precedence information:
• b stores the unique identifier of a block.
• n stores the number of predecessors specified for block b.
• p1, . . . , pn store the identifiers of the n predecessors of block b.
In general, we assume that p1, . . . , pn are immediate predecessors of block b,

but this is not a strict requirement. We assume that no two entries in the file
can begin with the same identifier. If a block b has no predecessors, then the
corresponding value n is set to 0 and no values pi are specified in the line.

D Optimization-Model Descriptor File

The Optimization-Model Descriptor File is used to store the necessary informa-
tion to formulate (UPIT ), (CPIT ), and (PCPSP).

D.1 The file format

D.1.1 NAME: <str s>

Identifies the data file.

D.1.2 TYPE: <str s>

Specifies the problem type. The value of s must be (UPIT ), (CPIT ), or
(PCPSP ).

D.1.3 NBLOCKS: <int n>

Gives the number of blocks in the problem.

D.1.4 NPERIODS: <int tmax>

Identifies the number of time periods for the problem; this field is valid for
formulating problems of type (CPIT ) and (PCPSP).

D.1.5 NDESTINATIONS: <int dmax>

Specifies the number of possible processing alternatives for each block; this field
is valid for formulating problems of type (PCPSP).
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D.1.6 NRESOURCE SIDE CONSTRAINTS: <int rmax>

Identifies the number of operational resource constraints per time period; this
field is valid for problems of type (CPIT ) and (PCPSP).

D.1.7 NGENERAL SIDE CONSTRAINTS: <int m>

Identifies the number of general side-constraints for the problem, or equiva-
lently, the number of rows in matrix A. This field is valid for problems of type
(PCPSP).

D.1.8 DISCOUNT RATE: <dbl α>

This specifies the discount rate used in computing the objective function. That
is, p̂bt = pb

(1+α)t and p̃bdt = pbd
(1+α)t , where pb and pbd are quantities defined

subsequently in the file.

D.1.9 OBJECTIVE FUNCTION:

The objective function is given by one row for each block. Thus, this section has
NBLOCKS lines. If the problem-type is either (UPIT ) or (CPIT ), the number of
destinations is assumed to be one, i.e., NDESTINATIONS=1. In this case, pb = pb1.
Each line is of the form:

<int b> <dbl pb1> . . . <dbl pbdmax
>

That is, the first value (b) defines the block, and the next dmax values de-
scribe the objective function values associated with each destination. No two
lines can begin with the same identifier.

D.1.10 RESOURCE CONSTRAINT COEFFICIENTS:

Here, we define the coefficients qbr and q̂brd, corresponding to constraints (5)
and (10) in (CPIT ) and (PCPSP). This entry consists of n lines, where n is at
most the total number of non-zero coefficients in the aforementioned constraints.
Specifically, each of these lines has the form:

<int b> <int r> <dbl v>
or
<int b> <int d> <int r> <dbl v>
The values of b, d, and r indicate the block, the destination, and the oper-

ational resource, respectively. The value of v represents the coefficient qbr or
q̂brd. All coefficients that are not defined in this way have value zero.

D.1.11 RESOURCE CONSTRAINT LIMITS:

Here, we define the limits Rrt and R̄rt corresponding to constraints (5) and (10)
in (CPIT ) and (PCPSP), respectively. This entry consists of NRESOURCE CONSTRAINTS

lines, each having the form:
<int r> <int t> <char c> <dbl v1>
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or
<int r> <int t> <char c> <dbl v1> <dbl v2>
The value of r indicates the operational resource and the value of t indicates

the time period in which the operational resource constraint holds. The value
of c can be L (less-than-or-equal-to), G (greater-than-or-equal-to) or I (within
an interval). If c has value L, then Rrt = −∞ and R̄rt is equal to the value of
v1. In this case, v2 is not defined. If c has value G, then R̄rt =∞ and the value
of Rrt is equal to v1. In this case, v2 is not defined. If c has value I, then v1 has
value Rrt and v2 has value R̄rt. No default value is assumed for these limits.
Thus, if an operational resource constraint has no specific type and limits, the
instance is not well defined.

D.1.12 GENERAL CONSTRAINT COEFFICIENTS:

Here, we define the coefficients Abdtj of matrix A, corresponding to constraints
(11) in (PCPSP), where b is a block identifier, d a destination identifier, t a
time period, and j a number between 0 and m − 1, where m is the number of
rows in A. This entry consists of n lines, where n is at most the total number of
non-zero coefficients in matrix A. Specifically, each of these lines has the form:

<int b> <int d> <int t> <int j> <dbl v>
The values of b, d, t, j, and v indicate the block, the destination, the time

period, the row, and the coefficient Abdrj in the matrix A, respectively. All
coefficients that are not defined in this way have value zero.

D.1.13 GENERAL CONSTRAINT LIMITS:

Here, we define the limits corresponding to constraints (11) in (PCPSP). This
entry consists of
NGENERAL SIDE CONSTRAINTS lines, each having the form:

<int m> <char c> <dbl v1>
or
<int m> <char c> <dbl v1> <dbl v2>
The value of m indicates the row number of A. The value of c can be L, G

or I. If c has value L, then am = −∞ and ām is equal to the value of v1. In
this case, v2 is not defined. If c has value G, then ām =∞ and the value of am
is equal to v1. In this case, v2 is not defined. If c has value I, then v1 has value
am and v2 has value ām. No default value is assumed for these limits. Thus, if
an operational resource constraint has no specific type and limits, the instance
is not well defined.
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