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b Department of Industrial Engineering, Universidad de Chile, Santiago, Chile

c School of Business, Universidad Adolfo Ibañez, Santiago, Chile

Abstract

We study an extension of the precedence constrained knapsack problem where the
knapsack can be filled in multiple periods. This problem is known in the mining
industry as the open-pit mine production scheduling problem. We present a new
algorithm for solving the LP relaxation of this problem and an LP-based heuristic
to obtain feasible solutions. Computational experiments show that we can solve
real mining instances with millions of items in minutes, obtaining solutions within
6% of optimality.
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1 Introduction

The Precedence-Constrained Knapsack Problem (PCKP) [8] is a
generalization of the classic knapsack problem. Each item i has a profit pi,
a weight qi and a set of precedences Pi. The problem consists in selecting
a subset of items in such a way as to maximize profits, and so that (1) the
added weight of the selected items is no greater than c, and (2) so that the
precedence constraints are satisfied; that is, in such a way that if item i is
selected, then so must every item in Pi. Many exact and heuristic methods
have been proposed for solving this problem (see for example, [12,14]), in-
cluding a number of techniques based on integer programming (see [4,10,13]).
In this paper, we study a generalization of this problem called the Multi-
period Precedence-Constrained Knapsack Problem (MPPCKP). In
this problem, the knapsack can be filled in different periods, where every item
has a (usually decreasing) different profit on each period. Our motivation for
studying this problem comes from a recognized problem in the mining indus-
try known as open pit mine production scheduling. In this application, items
are blocks that should be scheduled for extraction in time. The knapsack con-
straint represents production capacity constraints, and precedence restrictions
represent operational geometrical considerations (blocks can be extracted only
if all blocks above and within a prescribed cone have been extracted before
in time). A first optimization model for this problem was proposed by John-
son [9], and several authors have developed linear and integer programming
techniques for solving this problem (see for example [6,11,3,2]).

Formally, the precedence relationships will be represented in terms of a
digraph G = (V ,A) where (u, v) ∈ A represents that item u must be included
before or at the same period that item v. We assume that digraph G only
contains immediate precedence relationships. That is, if u, v, w ∈ V are such
that (u, v) ∈ A and (v, w) ∈ A then (u,w) /∈ A.

Let ct represent the capacity available at period t, qv the weight of item
v and pv(t) the profit of item v if it is included at period t. Define binary
variables xtv indicating if item v is included in the knapsack by time t. A
formulation to solve this problem is presented in Figure 1.

In our context, we assume that the profit pv(t) of an item v in time t is
proportional to the profit of the previous period. Hence, we can assume that
pv(t) = αt−1pv. This is a natural assumption in the context of net-present-

value optimization where profits are of the form
(

1
1+r

)t
pv, for an undiscounted

profit pv, a discount rate r and discrete time periods t = 1, . . . , T .



max
∑
v∈V

T∑
t=1

pv(t) · (xtv − xt−1
v )

s.t.∑
v∈V

qv(xtv − xt−1
v ) ≤ ct ∀t ∈ 1 . . . T

xtv ≤ xtu ∀(u, v) ∈ A, ∀t ∈ 1 . . . T

xtv ≤ xt+1
v ∀v ∈ V, ∀t ∈ 1 . . . T − 1

xtv ∈ {0, 1} ∀v ∈ V, ∀t ∈ 1 . . . T

x0
v = 0 ∀v ∈ V

Fig. 1. The MPPCKP Formulation

2 Computing feasible solutions: Toposort Heuristics

In this section we present a family of heuristics with which to obtain feasible
solutions for MPPCKP. Our main result in this section is heuristic which
takes as input the LP-relaxation solution of MPPCKP and yields (in our
computational tests) very good feasible solutions of MPPCKP.

Recall that G = (V ,A) defines an acyclic directed graph. It is known that
G admits a topological ordering of its nodes; that is, an ordering {v1, v2, . . . , }
such that if (vi, vj) ∈ A then i < j. Given a weight w(v) for each item v ∈ V ,
we say that ordering {v1, v2, . . .} is topologically sorted with respect to w if
it is a topological ordering, and in addition, (|i− j| = 1) ∧ (vi 9 vj) ∧ (vi 8
vj) ∧ (wi < wj) implies (i < j). Given a topological ordering of V , it is
easy to obtain a feasible solution for MPPCKP. In fact, it is simply a matter
of sequentially including all items in the order prescribed by the topological
ordering, scheduling each item as early as possible, and updating the available
capacity of the time period in which items are schedulued. Because items are
scheduled in topological order, precedences will not be an issue. Hence, it
is simply a matter of determining the earliest time period in which there is
capacity available in order to schedule each item. We refer to this algorithm
as TopoSort heuristic.

By defining weights in different ways this scheme can lead to a whole class
of TopoSort heuristics. For example, a Greedy TopoSort heuristic is obtained
by assigning as weight the profit of each item (w(v) = pv). It is interesting to
note that this scheme generalizes the heuristic of Gershon [7], commonly used



in the context of open-pit mining, in which the weight of each item is defined
as the sum of the profit of all items in the inverse-precedence set (that is, for
a given item i, the set of all items j for which i is a precedence).

We propose a weight function based on the LP relaxation x̄ of MPPCKP.
For each time period t and each item v define ytv = x̄tv − x̄t−1

v . Additionally,
define yT+1

v = 1− xTv . Observe that
∑T+1

t=1 y
t
v = 1 for each v. Thus, for t < T

we can imagine that ytv represents the probability that item v is included in
period t, and that yT+1

v represents the probability that item v is not included
in the knapsack in any period. This suggests defining w(v) as the expected
value w(v) =

∑T+1
t=1 ty

t
v. Note that if (u, v) ∈ A, then w(v) ≤ w(u). Moreover,

if x̄ is the optimal (integer) solution of MPPCKP, then w(v) is either equal to
the time of inclusion of item v, or equal to T + 1 if v is not included. Hence,
using Toposort with this weight function will lead to the optimal solution. We
call this variant the Expected-Time TopoSort heuristic.

3 Solving the LP-Relaxation oF MPPCKP

In order to use the Expected TopoSort heuristic or to solve the IP formulation
of MPPCKP directly it is necessary to first solve the LP relaxation. However,
as we will see in the computational results, this can be very difficult for large
problem instances. In this section we describe a new algorithm, which we call
the Critical Multiplier Algorithm, for solving the LP relaxation of MPPCKP.
The algorithm is based on two observations. The first is that in order to
solve a (single-time period) PCKP instance, it suffices to solve two single-
time period maximum closure problems and take a convex combination of the
solutions. The second observation is that in order to solve a (multiple-time
period) instance of MPPCKP, it suffices to solve a sequence of single-time
period problems and put together the solutions in the correct way.

3.1 The single time period case.

Define the linear relaxation of the PCKP with capacity κ as following:

CP (κ) = max px

st qx ≤ κ

xi ≤ xj ∀(i, j) ∈ A

0 ≤ xi ≤ 1 ∀i ∈ V



where we assume that q ∈ RV+ and κ ∈ R+. In this section we are concerned
with efficiently solving a problem of the form CP (κ). Observe that this cor-
responds to solving the linear relaxation of PCKP. Let us define the following
problem:

UP (λ) = max (p− λq)x

st xi ≤ xj ∀(i, j) ∈ A

0 ≤ xi ≤ 1 ∀i ∈ V

Note that solutions to UP (λ) are integral by total-unimodularity of the con-
straint matrix. Consider two feasible solutions x, y of UP (λ). We say that x
dominates y (and write y ≺ x) if x 6= y and y ≤ x. It is easy to see that exists
a maximal non-dominated optimal solution of UP (λ). We henceforth denote
this unique solution x(λ).

It is also known that for µ1, µ2 ∈ R and the optimal non-dominated so-
lutions x(µ1), x(µ2) of UP (µ1) and UP (µ2) respectively, if µ2 > µ1 ≥ 0 then
x(µ2) ≤ x(µ1). Due to this property, we say that λ is a critical multiplier of
UP if x(λ+ ε) ≺ x(λ) for all ε > 0. Observe that if µ and ν are distinct crit-
ical multipliers of UP , by definition, either x(µ) ≺ x(ν) or x(ν) ≺ x(µ). This
means there is only a finite set of critical multipliers. Let Λ = {λ1, λ2, . . . , λm}
represent the set of all critical multipliers, sorted in decreasing order. Note
that if µ2 > µ1 then qx(µ2) ≤ qx(µ1). Hence, for κ > 0, we can define
λu = max{λ ∈ Λ : qx(λ) ≥ κ} and λl = min{λ ∈ Λ : qx(λ) ≤ κ}. If λu = λl

then x(λu) = x(λl) is the optimal solution of CP (κ). On the contrary, if
λu < λl, then the solution of CP (κ) is a convex combination of x(λu) and
x(λl).

Theorem 3.1 Assume λu < λl, and let bu = qx(λu), bl = qx(λl). Define
α = bu−κ

bu−bl . Then x̄ = αx(λl) + (1− α)x(λu) is optimal for CP (κ).

Proof. (Sketch) First, note that x̄ is feasible of CP (κ). In fact, the precedence
constraints hold by convexity, and the knapsack condition holds since qx̄ =
αqx(λl) + (1 − α)qx(λu) = αbl + (1 − α)bu = κ. Secondly, it is possible to
construct, from the solution of the dual of UP (λu), an optimal solution of the
dual of CP (κ) with the same objective value, concluding that x̄ is optimal for
CP (κ). 2

3.2 Extension to the multi-time period case

Let Ut =
∑t

k=1 ck be the accumulated capacity at time t. We begin by noting
that the optimal solution of the linear relaxation of MPPCKP is equal to the



optimal solution of the following problem:

MP = max
∑T

t=1 p(t) · (xt − xt−1)

st xti ≤ xtj ∀t = 1, . . . , T ∀(i, j) ∈ A

xt ≤ xt+1 ∀t = 1, . . . , T − 1

q · xt ≤ Ut ∀t = 1, . . . , T

0 ≤ xt ≤ 1 ∀t = 1, . . . , T

x0 = 0

The key property of this formulation is that we can solve each time period
separately, and to merge all solution to construct an optimal solution of MP .

Theorem 3.2 Let x̄t be the optimal solution of CP(Ut) for all t = 1 . . . T .
Then, vector x̄ = (x̄1, x̄2, . . . , x̄T ) is optimal for MP, and therefore is optimal
for the linear relaxation of MPPCKP.

Proof. (Sketch) First, observe that if Ut < Ut+1 then x̄t ≤ x̄t+1. Therefore,
x̄ is a feasible solution for MP . Second, it is possible to prove that if ȳ
is a feasible solution for MP , then the vector of variables corresponding to
time t is feasible for CP (Ut), and therefore its objective value is at most the
corresponding objective value of x̄. This proves that x̄ is optimal for the LP
relaxation of MPPCKP. 2

This naturally leads to an algorithms to construct the linear relaxation
of the MPPCKP. We call this algorithm the Critical Multiplier Algo-
rithm (see Algorithm 1).

Algorithm 1. Critical Multiplier Algorithm
(i) Define Ut =

∑t
k=1 ck for t = 1, . . . , T .

(ii) Compute all of the critical multipliers λi of UP (λ) and the corresponding
solutions x(λi). This can be done using sensitivity analysis or binary
search.

(iii) Using the critical multipliers computed previous step, obtain the optimal
solution x̄t of problem CP (Ut) for each t = 1, . . . , T , as indicated by
Theorem 3.1.

(iv) Construct x̄ = (x̄1, x̄2, . . . , x̄T ). By Theorem 3.2, x̄ is the optimal solution
of the LP relaxation of MPPCKP, and its objective value is

∑T
t=1 γtpx̄

t,
where γT = ( 1

1+r )T and γt = (1− 1
1+r )( 1

1+r )t.



4 Computational Results

Our computational tests have two goals in mind. Our first goal is to compare
the performance of the Critical Multiplier algorithm with CPLEX LP algo-
rithms. Our second goal is to assess the quality of the solutions obtained by
using our proposed heuristics, and the time required to obtain them.

We denote the Greedy, Gershon and Expected TopoSort heuristics as
GrTS, GeTS, and ExTS, respectively. Additionally, we denote by CPXbest
the best time obtained by CPLEX 11 to solve the LP relaxation, among the
different LP solvers included on this software. We refer to the Critical Mul-
tiplier algorithm as CMA. When comparing objective function values, we
always present numbers divided by the upper bound obtained with CMA.
This allows us to assess the proximity of solutions to the optimal value.

The dataset to evaluate these algorithms is composed by four mines. One
is a ficticious mine called Marvin included in Whittle’s software, and the
remaining are real mines located in America, Asia and Chile. These four mines
contains 53’668, 19’320, 772’800 and 4’320’480 blocks respectively. Precedence
constraints are constructed using precedence cones of 45 degrees. All four
mines consider a time horizon of 15 years and a discount rate of 10%. Before
solving these problems we first apply a common pre-processing scheme [5]
reducing the number of variables into problems with 119’262, 96’675, 1’333’245
and 52’400’325 variables, respectively.

The following table contains the running times of CPXbest, CMA and
the running times and objective values of the Topological Sorting heuristics on
each of our data set instances. As expected, CPLEX is unable to solve the LP
relaxation of large instances in a reasonable time, but CMA can solve them
to optimality in minutes. Additionally, it can be seen that values obtained by
GrTS and GeTS are very poor in some of the instances, whereas the values
obtained by ExTS are very good (all within 6% of optimality). Moreover,
using these solutions as a starting point for a local search improving algorithm
(see [1]) it is possible to obtain solutions at less than 1% of optimality with a
few hours of extra computation.

Time Time Time ObjVal Time ObjVal Time Objval

Instance CMA CPXbest GrTS GrTS GeTS GeTS ExTS ExTS

Marvin 12 s 1h 3m < 1s 0.856 25s 0.867 < 1s 0.957

AmericaMine 4 s 19m 26s < 1s 0.819 11s 0.905 < 1s 0.940

AsiaMine 2m 36s 10d+ < 1s 0.750 3h 33m 0.861 < 1s 0.986

Andina 1h 44m N/A < 1s 0.486 4d 17h 0.524 < 1s 0.977
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