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Abstract

Lifting, tilting and fractional programming, though seemingly different, reduce to a common core optimization problem.
This connection allows us to revisit key properties of lifting, tilting and fractional programming in a simple common
framework, and extend known results from each of these problems to the other two.
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1. Introduction

Consider a nonempty mixed integer linear set M =
{x ∈ Rn : Ax ≥ h, xi ∈ Z ∀i ∈ I} where A ∈ Qm×n,
h ∈ Qm and I ⊆ {1, . . . , n}. Given a, c ∈ Qn and b, d ∈ Q
we are interested in solving

max{λ : (aTx− b)− λ(cTx− d) ≥ 0 ∀x ∈M}. (1)

that is, we would like to either determine an optimal value
λ∗ for this problem, or show that no such value exists
because the problem is either infeasible or unbounded.

Though problem (1) seems to have a very particular
structure, it is a common problem that appears in three
seemingly different contexts: lifting, tilting and fractional
programming. In this article we explore how these three
problems are in fact special cases of (1), and present a
general algorithm for solving (1) which extends the algo-
rithms presented in [8] for lifting, in [10] for tilting, and
in [7] for fractional programming. Though the connection
between these three problems does not require a complex
mathematical development, it allows us to show how re-
sults from one problem can extend known results for the
other two.

We start by defining the three different problems in
question. Throughout this section we will consider that P
is a polyhedron and that Q is a proper face of P . Given
an inequality αTx ≥ β which is valid for P , we say that
Q is defined by this inequality if Q = {x ∈ P : αTx = β}.
We can then define lifting and tilting as follows:
• Lifting. Given an inequality aTx ≥ b which is

valid for Q, lifting consists in obtaining an inequal-
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ity āTx ≥ b̄ which is valid for P and such that
aTx− b = āTx− b̄ for all x ∈ Q.

• Tilting. Assume P has dimension m and Q is de-
fined by cTx ≥ d and has dimension k < m − 1.
Tilting consists in obtaining an inequality c̄Tx ≥ d̄
which is both valid for P and such that it defines
face Q′ of P such that Q ( Q′.

These two problems are important in the context of
generating cutting planes for general mixed-integer pro-
grams (MIP) or particular combinatorial optimization prob-
lems. In particular, one would be interested in the case
when P is defined as the convex hull of M .

Finally, we introduce the fractional programming prob-
lem. Consider the mixed integer linear set defined as be-
fore, and assume cTx 6= d for all x ∈ M . Mixed integer
linear fractional programming consists in solving

inf

{
aTx− b
cTx− d

: x ∈M
}
. (2)

This is an important optimization problem arising in sev-
eral classes of applications. For comprehensive surveys of
methods and applications see Stancu-Minasian [22] and
Schaible [20, 21].

The outline of the paper is as follows. In Section 2 we
present an algorithm for solving Problem (1), and discuss
key properties, including feasibility, finiteness and conver-
gence. Afterwards we develop the connection between (1)
and each of these problems and its consequences. Section 3
is devoted to Lifting, Section 4 to Tilting, and Section 5
to Fractional Programming.

2. The base problem

In this section we consider problem (1). We will assume
throughout this section that cTx ≥ d for all x ∈ M . Let

Preprint submitted to Elsevier May 13, 2010



RM = {r ∈ Rn : Ar ≥ 0}. We first characterize feasibility
and unboundedness in Proposition 2.1 and 2.2.

Algorithm 1: Solving the base problem

Input: A nonempty mixed integer linear set M ,
vectors a, c ∈ Qn, and scalars b, d ∈ Q.

Output: The solution λ∗ to max{λ :
(aTx− b)− λ(cTx− d) ≥ 0, ∀x ∈M}, or
proof of infeasibility or unboundedness.

i← 1, z1 ← min{−(cTx− d) : x ∈M}.1

Let x1 be a minimizer or r1 ∈ RM : −cT r1 < 0.2

if z1 = 0 then3

z ← min{(aTx− b) : x ∈M}.4

if z ≥ 0 then5

Problem is unbounded. Stop.6

Problem is infeasible. Stop.7

if z1 = −∞ then8

while zi < 0 do9

if cT ri = 0 then10

Problem is infeasible. Stop.11

λi+1 ← aT ri

cT ri
, i← i+ 1.12

zi ← min{(aT r)− λi(cT r) : r ∈ RM, r ≤ 1}.13

Let ri be a minimizer having value zi.14

zi ← min{(aTx− b)− λi(cTx− d) : x ∈M}.15

Let xi be a minimizer having value zi.16

while zi < 0 do17

if (cTxi − d) = 0 then18

Problem is infeasible. Stop.19

λi+1 ← (aT xi−b)
(cT xi−d)

, i← i+ 1.20

zi ← min{(aTx− b)− λi(cTx− d) : x ∈M}.21

Let xi be a minimizer having value zi.22

λ∗ ← λi.23

Proposition 2.1. Assume M 6= ∅ and that cTx ≥ d for
all x ∈M (note that this implies cT r ≥ 0 for all r ∈ RM).
Problem (1) is feasible if and only if both

(cTx− d) = 0 implies (aTx− b) ≥ 0, ∀x ∈M, (3a)

cT r = 0 implies ar ≥ 0, ∀r ∈ RM. (3b)

Note that if there exists x ∈ M such that (cTx − d) = 0
then condition (3a) suffices for Problem (1) to be feasible,
since in this case (3a) implies (3b).

Proof. (⇒) If (3a) does not hold, then there exists x̄ ∈M
such that cT x̄ = d and aT x̄ < b, so for any λ ∈ R, we have
that (aT x̄ − b) − λ(cT x̄ − d) = aT x̄ − b < 0. If (3b) does
not hold, then let r̄ ∈ RM be such that cT r̄ = 0 and
aT r̄ < 0. Note that we may assume r̄ ∈ Nn. Let x̄ ∈M be
any arbitrary point. If (1) is feasible, then pick λ̄ feasible
for it. Let xα := x̄ + αr̄ ∈ M for all α ∈ Z+. But then
cTxα − d = cT x̄− d and aTxα − b = aT x̄− b+ αaT r̄. But
then aTxα − b = aT x̄− b+ αaT r̄ ≥ λ̄(cT x̄− d) ⇐⇒ α ≤
λ̄(cT x̄−d)−aT x̄+b

aT r̄
for all α ∈ Z+, which is a contradiction.

(⇐) We assume conditions (3a) and (3b) hold and show

that there exists λ such that (aTx − b) − λ(cTx − d) ≥ 0
for all x ∈ M . Let {x1, . . . , xp} and {r1, . . . , rq} be the
extreme points and extreme rays of conv(M). Given that
condition (3a) holds, if (aTxi− b) < 0 then (cTxi− d) > 0
for i = 1, . . . , p. Likewise, given that condition (3b) holds,
if aT rj < 0 then cT rj > 0 for j = 1, . . . , q. Then, there
exists λ < 0 such that, (aTxi − b)− λ(cTxi − d) ≥ 0 ∀i =
1, . . . , p and aT rj − λcT rj ≥ 0, ∀j = 1, . . . , q

Since for any x ∈M there exist α ≥ 0 and β ≥ 0 such
that x =

∑
i αix

i +
∑
j βjr

j and
∑
αi = 1 the second

implication follows. �

Proposition 2.2. Assume that cTx ≥ d for all x ∈ M .
Problem (1) is unbounded if and only if

(cTx− d) = 0 and (aTx− b) ≥ 0 for all x ∈M. (4)

Proof. It is easy to see that condition (4) is sufficient for
unboundedness, so we focus on necessity. Suppose that
this condition does not hold. Either (i) there exists x′ ∈M
such that (aTx′ − b) < 0 and (cTx′ − d) = 0, or (ii) there
exists x′ ∈M such that (cTx′ − d) > 0. From Proposition
2.1 we have that in the first case the problem is infeasible.
In the latter we have that every feasible solution λ satisfies
λ ≤ −(aTx′ − b)/(cTx′ − d), implying boundedness. �

In Algorithm 1 we describe how to solve Problem (1).
Observe that lines 17 - 22 are basically Dinkelbach’s al-
gorithm, lines 8 - 16 consider the case in which M is un-
bounded, and lines 1 - 7 consider the special case in which
(cTx − d) = 0 for all x ∈ M . To our knowledge, Chvátal
et al. [5] are the first to consider rays in order to extend
Dinkelbach’s algorithm to unbounded sets. The proof of
correctness of the algorithm is given in Theorem 2.3.

Theorem 2.3. Algorithm 1 satisfies the following:
(1) If the algorithm reaches step 6, then the problem is

unbounded.
(2) If the algorithm reaches steps 7, 11, or 19, then the

problem is infeasible.
(3) The sequence {λi} is monotone decreasing.
(4) If the algorithm reaches steps 16 or 22, then zi is

finite and there exists an optimal solution xi.
(5) If the algorithm reaches step 23, the value λ∗ corre-

sponds to the optimal solution value. Moreover, the
algorithm has identified x∗ ∈M such that cTx∗−d >
0 and λ∗ = (aT x∗−b)

(cT x∗−d)
, or r∗ ∈ RM such that cT r∗ > 0

and λ∗ = (aT r∗)
(cT r∗)

.

Proof. (1) If the algorithm reaches step 6 it is because
(cTx − d) = 0 and (aTx − b) ≥ 0 for all x ∈ M .
From Proposition 2.2 it follows that the problem is
unbounded.

(2) If the algorithm reaches step 7, step 11 or step 19,
then we either violate (3a) or (3b), so the result fol-
lows from Proposition 2.1.
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(3) Since (cTx − d) ≥ 0 for all x ∈ M , it follows that
cT r ≥ 0 for all ray r of conv(M). Moreover, in step
12 we have that cT ri > 0 and aT ri − λicT ri < 0.
Thus, λi >

aT ri

cT ri
= λi+1. Likewise, in step 20 we have

that (cTxi−d) > 0 and (aTxi−b)−λi(cTxi−d) < 0.

Thus, λi >
(aT xi−b)
(cT xi−d)

= λi+1.

(4) Let io be the value of i at step 16. Note that zio >
−∞ (since we exited the loop from step 9). It follows
that aT r − λiocT r ≥ 0 for all r ∈ RM . Since cT r ≥
0 for all rays of conv(M), and since the sequence
λi is monotone decreasing, we also have that aT r −
λic

T r ≥ 0 for all i ≥ io and r ∈ RM . Thus zi is
finite for i ≥ io and the solution xi obtained in step
16 exists. For step 22 the argument is analogous.

(5) Assume that the algorithm terminates on the i-th in-
teration. Since it is clear that λ∗ is feasible it suffices
to show that every λ̄ > λ∗ = λi is infeasible. First,
assume λ∗ was obtained at step 12. This implies

λ∗ = aT ri−1

cT ri−1 . In this case aT ri−1 − λ∗cT ri−1 = 0.
Since cT ri−1 > 0 it follows that aT ri−1− λ̄cT ri−1 <
0. This implies λ̄ is not feasible. In fact, for any
x ∈M we have, for α large enough, that x′ = x+αr
is such that (aTx′ − b) − λ(cTx − d) < 0. Next, as-
sume that λ∗ was obtained in step 20. This implies

λ∗ = (aT xi−1−b)
(cT xi−1−d)

, and in turn that (aTxi−1 − b) −
λ∗(cTxi−1 − d) = 0. Given (cTxi−1 − d) > 0 it fol-
lows that (aTxi−1− b)− λ̄(cTxi−1− d) < 0. In both
cases λ̄ is infeasible. �

A natural concern regarding Algorithm 1 is the num-
ber of times it has to invoke its oracle for solving MIPs
(steps 4, 15 and 21). The following proposition, while true
in general, can give an indication as to the number of iter-
ations required to terminate when cTx−d is integer. This
proposition results from combining results of Schaible [19]
and Easton and Gutierrez [8].

Proposition 2.4. Consider an instance of Problem (1).
Suppose that iterates xi and xi+1 have been obtained from
step 20 of Algorithm 1. If λi+1 is not optimal, then,
(cTxi − d) > (cTxi+1 − d). Analogously, suppose that
iterates ri and ri+1 have been obtained from step 12 of
Algorithm 1. If λi+1 is not optimal, then cT ri > cT ri+1.

Proof. Observe that the following conditions hold:

(aTxi − b)− λi+1(cTxi − d) = 0, (5)

(aTxi+1 − b)− λi+1(cTxi+1 − d) ≤ 0, (6)

(aTxi+1 − b)− λi(cTxi+1 − d) ≥
(aTxi − b)− λi(cTxi − d).

(7)

Thus, (5) - (6) imply that:

(aTxi+1−b)−(aTxi−b) ≤ λi+1((cTxi+1−d)−(cTxi−d)).

Putting this together with (7) we get that

(λi+1 − λi)((cTxi+1 − d)− (cTxi − d)) ≥ 0.

Since λi > λi+1, it follows that (cTxi+1− d) ≤ (cTxi− d).
We now prove that (cTxi − d) 6= (cTxi+1 − d). For this,
define:

Pi = {x ∈ P : (cTx− d) = (cTxi − d)}

Observe that,

xi = arg min{(aTx− b)− λi(cTx− d) : x ∈ Pi} =

arg min{(aTx− b) : x ∈ Pi}.

From this, (aTx − b) − λi+1(cTx − d) ≥ 0 for all x ∈ Pi.
In fact, if x ∈ Pi we have (aTx − b) − λi+1(cTx − d) =
(aTx−b)−λi+1(cTxi−d) ≥ (aTxi−b)−λi+1(cTxi−d) = 0.

However, since λi+1 is not optimal, we have (aTxi+1−b)−
λi+1(cTxi+1 − d) < 0. Thus, xi+1 is not in Pi. The case
for rays is strictly analogous. �

Two more points regarding convergence. First, it is
easy to see that if the oracle used for solving the MIPs
over M returns a finite number of possible solutions in
steps 1, 4, 15 and 21, then the algorithm terminates in a
finite number of steps. Even if this is not the case, the
convergence rate can easily be shown to be superlinear.
The following proposition is a simple extension of a result
in Schaible [19]:

Proposition 2.5. Assume that λ∗ is the last iterate ob-
tained in step 12 of Algorithm 1, and let r∗ ∈ RM be such

that λ∗ = aT r∗

cT r∗
. Then, for all λi 6= λ∗ obtained before step

17 of Algorithm 1, we have

λ∗ − λi+1

λ∗ − λi
≤ 1− (cT r∗)

(cT ri)
< 1.

Analogously, assume that λ∗ is the last iterate obtained
in step 20 of Algorithm 1, and let x∗ ∈ M be such that

λ∗ = (aT x∗−b)
(cT x∗−d)

. Then, for all λi 6= λ∗ obtained after step

17 of Algorithm 1, we have

λ∗ − λi+1

λ∗ − λi
≤ 1− (cTx∗ − d)

(cTxi − d)
< 1.

Proof. Note that

(aTxi − b)− λi(cTxi − d) ≤ (aTx∗ − b)− λi(cTx∗ − d)

implies

(aTxi − b)
(cTxi − d)

− λi ≤
(aTx∗ − b)
(cTxi − d)

− λi
(cTx∗ − d)

(cTxi − d)

Thus,

λi+1 − λ∗ =
(aTxi − b)
(cTxi − d)

− (aTx∗ − b)
(cTx∗ − d)

≤

(aTx∗ − b)
(cTxi − d)

− (aTx∗ − b)
(cTx∗ − d)

+ λi

(
1− (cTx∗ − d)

(cTxi − d)

)
=(

1

(cTxi − d)
− 1

(cTx∗ − d)

)
((aTx∗ − b)− λi(cTx∗ − d)) =(

1

(cTxi − d)
− 1

(cTx∗ − d)

)
(λ∗ − λi)(cTx∗ − d).
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By observing λ∗ < λi (see Theorem 2.3) and dividing by
(λi−λ∗) the result follows from the fact that (cTxi−d) >
(cTx∗−d) (see Proposition 2.4). The case of rays is strictly
analogous. �

An alternative to using Algorithm 1 was proposed by
Easton and Gutierrez [8]. Rather than enumerating a full
branch-and-bound tree each time step 22 of Algorithm 1
is executed, they propose enumerating a single branch-
and-bound tree with which to explore M . In their work
they describe a branch-and-bound mechanism in which the
objective function is iteratively changed. We present an
equivalent scheme which works by adding cutting planes
(and keeping the same objective function throughout).

Suppose we have a candidate solution λi ∈ R to prob-
lem (1) and consider the problem of finding x ∈ M that
minimizes (aTx− b)− λi(cTx− d):

min z
(aTx− b)− λi(cTx− d) ≤ z
x ∈M

(8)

If we solve this problem with a branch-and-bound algo-
rithm and in the course of branching identify a feasible so-
lution x̄ ∈M such that z(x̄) = (aT x̄−b)−λi(cT x̄−d) < 0
we clearly know that λi is not feasible for problem (1).
Moreover, we know that if cT x̄ = d, then problem (1) is
infeasible (see Proposition 2.1). If this is not the case, we
can simulate Algorithm 1 by adding a new cutting plane

(aTx−b)−λi+1(cTx−d) ≤ z, where λi+1 = aT x̄−b
cT x̄−d . As be-

fore, we will have λi > λi+1 ≥ λ∗. Further, since cTx ≥ d
for all x ∈M , we obtain a tighter cut than before. In fact,
this cut dominates the previous one, and we can think that
it replaces it. However, we can keep the same branch-and-
bound tree (including generated cuts) and iterate from
there, thus avoiding possible redundancies. We call this
the one-tree algorithm.

Note that we can start this algorithm with the value
of λi obtained from step 8 of Algorithm 1. Also, we could

start it with λ1 = (aT x1−b)
(cT x1−d)

where x1 is the solution found

at step 2. By the arguments presented in Theorem 2.3 it
is easy to see that the one-tree algorithm is correct.

3. Lifting

Consider a mixed integer set M and a proper face Q
of conv(M) defined by Q = {x ∈ conv(M) : cTx = d},
where cTx ≥ d is a valid inequality for conv(M). Assume
that aTx ≥ b is valid for Q, and that Q 6= ∅. The lifting
problem consists in finding an inequality āTx ≥ b̄ that is
valid for conv(M), such that (āTx − b̄) = (ax − b) for all
x ∈ Q, and such that Q ( Q′ = {x ∈ conv(M) : āTx = b̄}.

Lifting was first proposed by Gomory [11] and Pol-
lateschek [16] in the context of group and set packing
problems. Padberg [15] was the first to propose a compu-
tational method for lifting, and Wolsey [23] generalized the

procedure as it is known today. Lifting has many impor-
tant practical uses in general MIP. Crowder et al. [6] and
Gu et al. [12, 13] have shown that lifted cover inequalities
can significantly improve the performance of general-use
MIP solvers.

The lifting problem can be solved by finding a value
λ ∈ R such that (aTx − b) − λ(cTx − d) ≥ 0 is valid for
conv(M). Given that Q 6= ∅ and that (aTx ≥ b) is valid
for Q, Proposition 2.1 ensures that the lifting problem is
feasible. Given that cTx ≥ d is assumed to be a valid
inequality in the context of lifting, the larger the value of
λ, the better the inequality obtained. The optimal lifting
problem consists in finding the largest such value. Clearly,
the optimal lifting problem reduces to a problem of type
(1). Given that Q 6= conv(M), Proposition 2.2 ensures
that the optimal lifting problem is well-defined (e.g., not
unbounded), and can be solved with Algorithm 1. Easton
and Gutierrez [9] use a very similar algorithm to lift integer
variables.

Computational implementations of optimal lifting have
typically restricted to the case in which cTx ≥ d corre-
sponds to the bound constraint of an integer variable (e.g.
constraints of the form xi ≤ t). They have proceeded by
fixing xi to each of the values it can take and solving sev-
eral problems independently (eg, min{ax : x ∈ M , xi =
k} for each value k in the domain of xi) to determine the
largest feasible coefficient.

It is when we move away from lifting pure integer vari-
ables that things become more interesting. First, it should
be noted that lifting a constraint of the form (cTx− d) is
theoretically the same as lifting a single variable. For this,
add a slack variable s = (cTx − d) and lift from the face
defined by s ≥ 0 (Louveaux and Wolsey [14]). However, in
practice it has not been so clear how this variable s should
be lifted. In this way, using Algorithm 1 to solve the lifting
problem is different to what is traditionally done for sev-
eral reasons: First, because it can be used to lift continuous
and/or unbounded variables (such as the slack variable of
mixed integer constraint, as illustrated above), or to di-
rectly lift using arbitrary constraints. Second, because it
can result in solving less MIPs to get the final lifting coef-
ficient (due to improved convergence rates). There is also
a third computationally attractive application.

In practical applications of lifting it is often the case
that Q is described by several valid inequalities. That
is, Q = {x ∈ conv(M) : cTi x = di for i = 1, . . . , k}, where
cTi x ≥ di are valid inequalities of conv(M) for i = 1, . . . , k.
Approaches for solving this typically rely on lifting each of
these constraints one at a time (sequential lifting).

Easton and Gutierrez [9] observe the following. Let

αi > 0 for i = 1, . . . , k and define c =
∑k
i=1 αici and

d =
∑k
i=1 αidi. Clearly, cTx ≥ d is valid for P . Further,

if x ∈ M , then cTx = d implies cTi x = di for i = 1, . . . , k.
Thus Q = {x ∈ conv(M) : cTx = d} and we can lift aTx ≥
b by solving (1). This can be achieved with Algorithm 1
regardless of how the constraints cTi x ≥ di are defined.
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4. Tilting and the facet procedure

Consider a mixed integer set M and a valid inequality
cTx ≥ d defining a proper face Q of P := conv(M). We
would like to obtain from cTx ≥ d a facet-defining inequal-
ity of conv(M) (or show that cTx ≥ d is one). This can
be done by what is called the facet procedure [1, 5]. At the
heart of the facet procedure is the tilting problem, which
is just an instance of (1).

We start by describing the facet procedure. Consider
a set Qo = {x1, . . . , xq} 6= ∅ of affinely independent points
in Q. These prove dim(Q) ≥ q − 1. Consider also a set of
linearly independent implicit equations P⊥o = {p1, . . . , pr}
in P⊥ := {p ∈ Rn : pTx is constant,∀x ∈M} (i.e. the set
of valid equations for conv(M)). These prove dim(P ) ≤
n−r. Finally, note that any point x̄ ∈M \Q is a certificate
that Q is a proper face of P . Observe that if q+r = n then
cTx ≥ d must define a facet of P . The facet-procedure
consists in increasing at each iteration the cardinality of
Qo or P⊥o by using tilting. The tilting procedure receives
as input: cTx ≥ d defining a face Q of P , Qo, P

⊥
o and x̄.

It produces as output one of the following:
• A point xq+1 ∈ M which is affinely independent of

the points in Qo, a valid inequality c̄Tx ≥ d̄ for M
such that c̄Txi = d̄ for i = 1, . . . , q + 1, and a new
point x̄ such that c̄T x̄ > d̄, or,

• A point pr+1 in P⊥ which is linearly independent of
the points in P⊥o .

Observe that with these inputs and outputs we can iter-
atively repeat the tilting procedure and obtain a facet-
defining inequality satisfying the required conditions in at
most n iterations. At each round, tilting works as follows.
It begins by finding a valid tilting direction. That is, a
non-zero pair (v, w) such that

vT pi = 0 ∀pi ∈ P⊥o (9)

w − vTxi = 0 ∀xi ∈ Po (10)

w − vT x̄ = 0 (11)

It is not difficult to see that cTx ≥ d does not define
a facet of P if and only if there is a nonzero solution to
the above system of linear equations [5], which can easily
be obtained by linear programming. Given a valid tilting
direction (v, w), tilting continues by solving the problem,

max{λ : (vTx− w)− λ(cTx− d) ≥ 0, ∀x ∈M} (12)

Several outputs are possible if Algorithm 1 is used to solve
problem (12) (we assume below that all rays are integer).

1. The problem is infeasible and the algorithm returns
a point x∗ ∈M such that (cTx∗−d = 0) and (vTx∗−
w) < 0. In this case let (c̄, d̄) = (c, d) and xq+1 = x∗.
The fact that vTx∗ < w and vTxi = w for all i =
1, . . . , q imply that x∗ is affinely independent from
all points in Qo. Leave x̄ unchanged.

2. The problem is infeasible and the algorithm returns a
ray r∗ of conv(M) such that (cT r∗ = 0) and (vT r∗) <

0. In this case let (c̄, d̄) = (c, d) and xq+1 = xq + r∗.
By the same argument above, xq+1 is affinely inde-
pendent of all points in Qo. Leave x̄ unchanged.

3. The algorithm has optimal solution λ∗ = 0. This
implies vTx ≥ w for all x ∈M . In this case, solve

z = max{(vTx− w) : x ∈M} (13)

There are two possible sub-cases:
(a) If z = 0 then M ⊆ {x : vTx = w}, so define

pr+1 = v. Condition (9) implies v is linearly
independent of all vectors in P⊥o .

(b) If z > 0 define (c̄, d̄) = (v, w) and xq+1 = x̄. If
z = +∞ let r be the ray proving unboundedness
of (13), and redefine x̄ = xq+1 + r. Otherwise,
redefine x̄ to be the maximizer of problem (13).

4. The algorithm has optimal solution λ∗ 6= 0. In this
case let (c̄, d̄) = (v − λ∗c, w − λ∗d). If the optimal
solution of (12) is x∗, let xq+1 = x∗. If the opti-
mizing solution is a ray r∗ let xq+1 = xq + r∗. By
Theorem 2.3-(5), we have that cTxq+1 > d so xq+1

is affinely independent of x1, . . . , xq. Leave x̄ as it
was before.

Observe that Proposition 2.2 and the fact that cT x̄ > d
ensure that problem (12) is not unbounded. For a de-
tailed proof and geometrical interpretation of the algo-
rithm see [5]. Finally, note that if many inequalities are to
be tilted over a same set conv(M), one only needs to com-
pute the points P⊥o once, thus speeding up computations.

Algorithm 1 is very similar to the tilting algorithm of
[5]. However, the results in Section 2 allows for a much
more compact presentation of the facet procedure, as well
as new convergence results and the one-tree algorithm.

5. Fractional Programming

Mixed integer linear fractional programming consists
in solving problem (2). Throughout this section we will
assume that this problem is well-defined; that is cTx 6= d
for all x ∈M . In the context of fractional programming it
is usually assumed that cTx > d for all x ∈M . This makes
sense if M is a convex set, since otherwise there would exist
x such that cTx = d. However, if M is a mixed-integer set,
we can have cTx 6= d,∀x ∈ M and cTx1 > d, cTx2 < d
for x1, x2 ∈ M . Define then M+ = {x ∈ M : cTx ≥ d},
and M− = {x ∈ M : cTx ≤ d} and suppose that we can
separately solve

inf
{

(aTx− b)/(cTx− d) : x ∈M+
}
, (14a)

inf
{

(aTx− b)/(cTx− d) : x ∈M−
}
. (14b)

Observe that if both (14a) and (14b) are infeasible, then
(2) is infeasible. Else, if either (14a) or (14b) is unbounded,
then (2) is unbounded. Else, if both (14a) and (14b) are
feasible, then taking the minimum of the two solutions
yields the optimal solution of (2). Finally, if only one of
these two problems is feasible, then its solution is optimal
for (2).
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Next, observe that solving (14b) is equivalent to solving

inf
{

(−aTx+ b)/(−cTx+ d) : x ∈M−
}
. (15)

However, solving (14a) and (15) is equivalent to solving
two instances of (2), where (cTx − d) ≥ 0 for all x ∈ M .
Thus, in what follows we assume that the condition holds.

This small trick may seem unimportant, but it extends
the class of soluble fractional programming problems. In-
deed, any fractional programming algorithm that works by
solving linear relaxations would not be able to deal with
problems where cTx 6= d for all x ∈ M , but where there
exists x̄ ∈ LP (M) with cT x̄ = d.

Solving (2) consists in finding a minimizing solution x̄,
or showing that none exists. If no optimal solution exists,
an algorithm for solving (2) should identify a sequence of
feasible solutions in M that are asymptotically optimal or
that prove the problem is unbounded. We now show how
it is possible to obtain the solution to (2) by solving (1).

Suppose that Problem (1) admits an optimal solution
λ∗. We can obtain an optimal (or asymptotically optimal)
solution of (2) as follows:

1. If there exists an extreme ray r̄ of conv(M) such that

λ∗ = aT r̄
cT r̄

define the following asymptotically optimal
sequence of solutions to (2). Let x̄ be any feasible
solution in M and, for k ∈ N, define x(k) = x̄ + kr̄.

It is easy to see that lim
k→∞

aT x(k)−b
cT x(k)−d = aT r̄

cT r̄
= λ∗.

If solving Problem (1) with Algorithm 1, one will
obtain r̄ from step 2 of the algorithm, and x̄ from
step 16.

2. If there exists a solution x̄ ∈ M such that λ∗ =
aT x̄−b
cT x̄−d , then x̄ is a minimizer for Problem (2). If
solving Problem (1) with Algorithm 1, one will ob-
tain x̄ from steps 16 or 22.

Because we are assuming that (cTx − d) 6= 0 for all
x ∈ M , it is clear that Problem (1) can never be un-
bounded. Further, because of the same reason, if Problem
(1) is infeasible it can only be because there exists a ray r̄
of conv(M) such that aT r̄ < 0 and cT r̄ = 0. In this case
it is easy to see that Problem (2) is unbounded. In order
to obtain an unbounded sequence of minimizing solutions
we proceed in a manner analogous to case 1 above.

Previous methodologies to solve mixed integer frac-
tional programming problems require combining special-
ized simplex-like algorithms for fractional programming
(see [4] and [2]) with branch-and-bound methods. In con-
trast, the presented methodology is easy to implement us-
ing existing commercial MIP solvers, thus taking advan-
tage of all the significant advances of recent years. In addi-
tion, the one-tree algorithm promises to be a competitive
new alternative that requires computational testing.
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